
Insecure (Don’t Know What For)

As established in the previous problem, m = x⊕ y⊕ z. So, what we want to

do is evaluate this sum: ∑
valid (i,j,k)

vi ⊕ vj ⊕ vk

Standard Approach: Bitwise Decomposition

When doing problems involving bitwise operations, decompose your

numbers into their binary representations, and consider each place

value as a separate independent problem.

That is: can you solve the original problem if your array was just a

sequence of 0s and 1s? If yes, then handle each place value separately.

Standard Toolbox: Switch the order of summation

When dealing with double (or more) summations, consider swapping

the order of the Sigmas.

Changing which variable goes in the inner loop can, for example, allow

you to factor out a term that is no longer dependent on the inner

summation.

We can consider the binary representation of each of our integers, and ex-

plicitly write each one’s expanded form. For example,

vi = (0th bit of vi) + (1th bit of vi)2
1 + (2th bit of vi)2

2 + . . . + (29th bit of vi)2
29

Since the bitwise XOR is computed by independently performing a logical

XOR on each place value, we can rewrite our above sum as

∑
valid (i,j,k)

30−1∑
b=0

2b · ((bth bit of vi)⊕ (bth bit of vj)⊕ (bth bit of vk)) .

1



Now interchange the order of the summations.

30−1∑
b=0

∑
valid (i,j,k)

2b · ((bth bit of vi)⊕ (bth bit of vj)⊕ (bth bit of vk))

Since 2b is not dependent on the inner summation—which iterates over pair-

wise distinct (i, j, k)—we can factor it out.

30−1∑
b=0

2b
∑

valid (i,j,k)

(bth bit of vi)⊕ (bth bit of vj)⊕ (bth bit of vk)

Our sum is now just a counting problem. For each place-value b, answer

independently: How many pairwise distinct (i, j, k) are there such that

(bth bit of vi)⊕ (bth bit of vj)⊕ (bth bit of vk) = 1

It’s not too hard to enumerate all such cases:

bth bit of vi bth bit of vj bth bit of vk
1 1 1

0 0 1

0 1 0

1 0 0

Let O(b) be the number of elements with a 1 bit at the bth place value, and

let Z(b) be the number of elements with a 0 bit at the bth place value. By

standard combinatorics’ rule of product, the number of ways to form each of

the above combinations is:

• O(b) · (O(b)− 1) · (O(b)− 2)

• Z(b) · (Z(b)− 1) · O(b)

• Z(b) · O(b) · (Z(b)− 1)

• O(b) · Z(b) · (Z(b)− 1)

2



Each of these can be computed in O(n), and doing it for all b gives us an

O(n log v) solution.

Implementation

For C++ users, note that the answer can be large. We can show that

the maximum value of ≈ 230 ·4(105)3 does not fit in a 64 bit data type,

but it does fit in a 128 bit integer like __int128.

The data type __int128 is not supported by cout, but it is not too

hard to manually output it digit-by-digit.

3


