
Hop, Skip, Jump!

Problem Solving Technique: Solve specific cases

It might give you insight to the full solution!

Question: When is the minimum number of rounds 1?

Claim

The task can be done in one round if and only if a, b, and c (in some

order) form an arithmetic progression.

Proof

WLOG let a ≤ b ≤ c form an arithmetic progression, so let b = a + d

and c = a+ 2d. Then, to make them all equal, choose k := d, and:

apply +3k to a, and apply +2k to b, and apply +k to c.

On the other hand, suppose we made all values equal to m in just one

round. Then, rewinding one step, m − 3k,m − 2k,m − k forms an

arithmetic progression with common difference k.

Question: When is the minimum number of rounds 2?

Working backwards: If the task can be solved in two moves, then after one

round, it should be solvable in one move. That is to say: we need to transform

the numbers into an arithmetic progression in one round.

Is this always possible? Let’s explore.

Standard Approach: Algebra

Precisely mathematically describe the problem or scenario, in symbols.

This enables you to use algebra—we teach that in school for a reason.

WLOG let a ≤ b ≤ c, and let (pa, pb, pc) be a permutation of (1, 2, 3).

After one round, we transform (a, b, c) 7→ (a+ pak, b+ pbk, c+ pck).

1

One way these could form an arithmetic progression is if we make it so that

(b+ pbk)− (a+ pak) = (c+ pck)− (b+ pbk)

(i.e. this is the common difference). Solving for k:

k =
c− 2b+ a

−pc + 2pb − pa

Note that pa+pb+pc = 6, regardless of permutation. So, we can express the

above as:

k =
(a+ b+ c)− 3b

−6 + 3pb
.

(We also rewrote the numerator in a similar evocative manner.)

We must ensure that k is an integer, so we do casework on pb:

• If pb = 1, the denominator is −3.

• If pb = 2, the denominator is 0 (bad).

• If pb = 3, the denominator is 3.

We can get an integer if and only if the numerator is divisible by 3, which

happens if and only if a+ b+ c is divisible by 3 (shelve this fact for later).

We also must ensure that k is positive, and this is always possible:

• If the numerator is negative, choose pb = 1.

• If the numerator is already positive, choose pb = 3.

2

Claim

If a+ b+ c is divisible by 3, then the task can be done in 2 rounds.

Proof

WLOG let a ≤ b ≤ c.

If a+ b+ c− 3b > 0, choose (pa, pb, pc) = (1, 3, 2) and

k :=
a+ b+ c− 3b

3
.

If a+ b+ c− 3b < 0, choose (pa, pb, pc) = (2, 1, 3) and

k :=
a+ b+ c− 3b

−3
.

By construction, as shown earlier, this results in an arithmetic progres-

sion, which can be made all equal in one more round.

Bonus

As a bonus, complete the proof by proving the following.

• a+b+c−3b = 0 if and only if (a, b, c) already formed an arithmetic

progression (in which case solvable in one move)

• As per the bounds of this problem’s checker, show that this con-

struction ensures the k chosen for the first and second round are

both ≤ 109.

Finally, what about the case where a+ b+ c is not divisible by 3?

Play around with it for a bit, and you might start to get the feeling that this

case is impossible. Let’s prove it.

3

Standard Toolbox: Invariants for Impossibility

When trying to prove a task is impossible using some operation, find

a property that the operation never changes (this property is called

the invariant) and show that the starting point and the end goal have

different invariants.

Claim

If a+ b+ c is not divisible by 3, then the task is impossible.

Proof

Note that the sum modulo 3 is invariant under the hop, skip, jump

operation.

(a+ pak) + (b+ pbk) + (c+ pck) = (a+ b+ c) + (pa + pb + pc)k

= (a+ b+ c) + 6k

≡ a+ b+ c (mod 3).

However, note that our end goal is (m,m,m) for some integer m. But

here, m+m+m ≡ 0 (mod 3).

So, if a+ b+ c did not already start at 0 (mod 3), it will be impossible

to make it so, using the hop, skip, jump operation. Thus, the task is

impossible.

4

Implementation

Implementation for this problem can be annoying because of manag-

ing all the different cases. This is in contrast to the natural-language

construction of the proof, where we are able to use statements like

“without loss of generality, assume a ≤ b ≤ c”.

So... implement it that way!

def solve(a, b, c):

...

WLOGger = sorted((x, i) for i, x in enumerate([a, b, c]))

sorted_values, sorted_indices = zip(*WLOGger)

if sorted_values != (a, b, c):

inverse = {

sorted_indices[i]: i

for i in range(3)

}

return [

(v, tuple(op[inverse[i]] for i in range(3)))

for v, op in solve(*sorted_values)

]

So, if we made it here, a <= b <= c

...

In my implementation, I have done the following.

• Define a solve(a, b, c) function

• If (a, b, c) is not in sorted order, have the function call itself with

the arguments in the right order.

◦ Remember to “translate” the operations back to what they

should be, had we not rearranged the elements.

• That way, we only make it past that if statement if a ≤ b ≤ c, so

it’s an assumption we can safely make from that point on (greatly

simplifying the logic of the code)

5

