
Find the Fake

Problem Solving Technique: Solve an easier version first

It can be easier to reckon with, and might give you insight to the full

version of the problem.

Always do the subtasks first. Even then, don’t feel limited to needing

subtasks—make up your own!

Forget about efficiency for now. Let’s try to logic out any solution.

Problem Solving Technique: What does it do?

Have a strange operation? Try rephrasing it in more concrete terms:

• What is its effect on the other things in the scenario?

• What does it enable you to do, in terms of these other things?

It may also be helpful to describe what it doesn’t do.

What does each query actually tell us?

• If the weight is 2 · size of subset, then the fake is among these coins.

• If not, then the fake is not among these coins.

Each query simply tells us Yes/No whether the fake is among these coins.

What does this knowledge tell a perfect logician like Alice?

Standard Approach: Extreme principle

Trying to grapple with a problem? Look at “extreme” cases and see

how they behave.

Consider the extreme case of q = 0.

If there are no queries, what would Alice say? She would say “Maybe” on

all n coins. So evidently, what each piece of information does is turn some

of those Maybes into Nos.
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https://artofproblemsolving.com/wiki/index.php/Extreme_principle


Let’s connect that with the queries.

• If the fake is not among these coins, then the answer for every coin in

this selection turns from Maybe to No.

• If the fake is among these coins, then the answer for every coin not in

this selection turns from Maybe to No.

This basically solves the problem. The only question remaining is when Alice

says Yes—she does so when there is only one coin left flagged Maybe.

Implement this solution with sets and you will have solved all but the last

subtask already.

Implementation

Maintain two sets maybe and no, the former initially containing all the

coins (while the latter starts empty). With each query, we remove coins

from maybe and add those into no.

This is very easy in Python, where |= and &= and -= are supported

operations on sets.

For the last subtask, we cannot literally create a set with 109 elements—that’s

too much!

The key is that maybe and no provide technically redundant information,

since they are complements of each other. So, given one, you can recover the

other. And the size of either one is always going to be bounded by K.

• If the fake coin is never found, then all we’ve done is move all the coins

from the queries into no. So, just shove all K of these coins into no.

• If the fake coin is ever found at some point, then we dump all coins

into no except for the ones in this query; those stay in maybe. But the

number of coins in a single query is ≤ K, so the size of maybe will be

small after this move; now we can just use the solution from earlier

from this point on.
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