
Deerly Departed

Problem Solving Technique: Solve an easier version first

It can be easier to reckon with, and might give you insight to the full

version of the problem.

Always do the subtasks first. Even then, don’t feel limited to needing

subtasks—make up your own!

Consider the case where xi = yj = 1 always, which implies that n = m.

In this case, the task is to simply figure out how to match up the deer and

caretakers, such that the happiness is maximized (or minimized).

Problem Solving Technique: Play

Play around with actual concrete cases on pen and paper. See if there

are any patterns you can notice among them.

After playing around with concrete values, you should get start to get this

feeling...

Of course we want to pair big numbers with other big numbers if we want

the sum maximized. And of course we try to pair the big numbers with the

small numbers from the other list, if we want the sum minimized.

Maybe we should take that to its logical extreme.

Standard Approach: Extreme principle

Trying to grapple with a problem? Look at “extreme” cases and see

how they behave.

Claim

In the case where xi = yj = 1 always, the happiness is maximized when

c and d are both sorted; and minimized when one is sorted, and the

other is sorted in reverse order.

1

https://artofproblemsolving.com/wiki/index.php/Extreme_principle


Remark

This is known as the Rearrangement Inequality, and is somewhat stan-

dard in both contest math, and competitive programming (as an ex-

ample of a “greedy” approach).

The proof of the Rearrangement Inequality is deferred until later.

How to solve the original version of the problem?

Useful Trick: Solve a looser version of the problem.

Consider a looser version of the original problem (i.e. it admits more

possible solutions). If the answer in the looser version is also always

valid in the original, then that solves the original problem as well!

Claim

Even in the full version of the problem, the happiness is maximized

when c and d are both sorted; and minimized when one is sorted, and

the other is sorted in reverse order.

Proof

Suppose the deer and caretakers don’t need their time scheduled con-

tiguously. That is, suppose we are allowed to break up everyone’s times

into 1-unit fragments, and schedule those fragments however we want

throughout the day (the fragments don’t have to be chunked together).

In this looser version, the answer is given by the Rearrangement In-

equality: Sort the c fragments, and either sort d the fragments (to

maximize happiness) or reverse-sort them (to minimize happiness).

But in a sorted order, the 1-unit fragments of some deer (or caretaker)

will end up next to each other anyway. So this must also be the optimal

solution in the case where each deer and caretaker must have their time

scheduled contiguously!

2

https://artofproblemsolving.com/wiki/index.php/Rearrangement_Inequality


Implementation

To actually compute the sums in O(n lg n) time, you would have to

implement some kind of line sweep algorithm (generally considered

standard in comp prog). You can ask the Discord server for details!

Implementation

For C++ users, note that the answer can be large. We can show that

the maximum value of ≈ (106 · 106) · (105 · 106) does not fit in a 64 bit

data type, but it does fit in a 128 bit integer like __int128.

The data type __int128 is not supported by cout, but it is not too

hard to manually output it digit-by-digit.

3



Proof: Rearrangement Inequality

The proof is by exchange argument. WLOG suppose c is sorted

(so ci ≤ cj for all i ≤ j), and let Di be the value of d paired with ci.

Suppose there exists i < j such that Di > Dj. Then, we can always

make the sum bigger (or at least not worse) by swapping i and j, as

ciDi + cjDj ≤ cjDi + ciDj.

We can prove this by starting at,

ci ≤ cj,

and so we can multiply the same (positive) value to both sides:

ci(Di −Dj) ≤ cj(Di −Dj)

which resolves to the desired inequality, after doing some algebra.

A pair (i, j) such that i < j butDi > Dj is called an inversion. There is

only one way to get a sequence with no inversions—ifD is sorted. Since

removing an inversion never decreases the happiness, it follows that the

sorted D has a happiness ≥ the happiness of all other orderings.

Minimization works by a similar argument.

4


