
1 Chinese Remainder Problem

Claim

The task is only possible if k < ai for all i.

With that annoying edge case out of the way, let’s assume that k < min(a)

and solve the problem.

Problem Solving Technique: Solve an easier version first

It can be easier to reckon with, and might give you insight to the full

version of the problem.

Always do the subtasks first. Even then, don’t feel limited to needing

subtasks—make up your own!

Forget about ℓ and r for now.

Is there any integer x such that x mod ai = k for all i?

Well, yes! Here’s an obvious answer. Take k itself. Since k < ai for all i, it

is guaranteed that k mod ai = k always.

How about other solutions?

Standard Toolbox: Solution families

In math, a common technique is to ask:

• If I have one solution to a problem, can I use that to generate

more solutions?

If you do, then starting from one “primitive” solution, you can produce

an entire family of other solutions.

We know something about k (it has our desired property), so let’s try to

express other solutions in terms of k. For an arbitrary integer x, let d := x−k,

allowing us to write x = k + d.

1



Then, if we desire x mod ai = k...

x mod ai = k

(k + d) mod ai = k

(k mod ai) + (d mod ai) ≡ k

k + (d mod ai) ≡ k

d mod ai ≡ 0.

Thus, we see that d has to be divisible by all the ai , and there is a stan-

dard characterization of such integers: they are the multiples of the least

common multiple of all the ai.

Claim

An integer x satisfies x mod ai = k for all i if and only if it can be

written as k +mt, where m = lcm(a) and t is a non-negative integer.

To find any integer within the range [ℓ, r], we note that k and m are fixed

values (the LCM can be computed from all the ai), and our only degree of

freedom is t.

Standard Approach: Algebra

Precisely mathematically describe the problem or scenario, in symbols.

This enables you to use algebra—we teach that in school for a reason.

Say we wanted to find the largest valid integer x that is ≤ r. So, we write:

k +mt ≤ r,

and solving for t,

t ≤ r − k

m

2



Since we want the largest non-negative t which is also an integer, we get:

t =

⌊
r − k

m

⌋
if this is non-negative, else 0.

So, let x := k+mt using this t. If ℓ ≤ x ≤ r, then that is our answer. If not,

then no solution can exist.

Implementation

Note that the product of two numbers ≤ 1010 can reach up to 1020,

which does not fit in a 64 bit data type.

So, when computing the LCMs in C++, you must either use __int128,

or otherwise have some special check before multiplying for if the prod-

uct would overflow (instead of a*b < LIM, you can test a < LIM/b to

dodge overflow).

Implementation

Note that the LCM can be massive. Even if you used Python or

some other BigInteger class, you cannot literally compute m = lcm(a)

without running out of time, because the numbers are so large that

performing the arithmetic will cause you to run out of time.

Note that in the worst case, if a were the 105 largest primes ≤ 1010,

then their LCM would just be their product, so your code would deal

with values up to ≈ 1050. GCD and LCM between integers of this size

is too slow for us to do 105 times.

So, we’ll need a cute trick.

We note that

⌊
r − k

m

⌋
= 0 whenever m > r (and r − k ≥ 0).

• Try to compute lcm(a) naively.

• But, if a running value ever becomes > r, just stop immediately

and set t := 0.

3


	Chinese Remainder Problem

