
Kyuuing Theory

Pure brute force

The key to this problem is to consider a fixed value of k. Consider the question, “Can k instructors service all

students in the queue by time T?”; what we want is to find the smallest k for which the answer is yes.

Answering this yes/no question is much easier than the original problem. For example, you can just directly simulate

the process as described.

• Assign an instructor to each of the first k students in the queue. Let freed_at be a list of length k such that

freed_at[i] describes the time when the ith instructor is freed. Initially, set freed_at[i] = a[i].

• While there is a student in the queue, we must figure out which instructor will service the student in front.

Do an O(k) scan to find the instructor who is free the soonest (i.e. any t such that freed_at[t] is minimal).

• That student goes there next, so update the instructor’s free time: freed_at[t] += a[next student].

• Repeat this process until all students have been serviced.

• The total time it takes to service everyone is equal to the maximum value of any freed_at once all students

have been assigned to an instructor, so the answer is yes if and only if max(freed_at) <= T at the end.

This simulation takes O(k(n− k)) time.

Test each k from 1 to n until you find the first yes. This gives us a solution that runs in
∑n

k=1 k(n − k) = O(n3)

time, which is fast enough for the first two or three subtasks.

A faster simulation

Our simulation is slow because of the O(k) linear scan to find the minimal element of freed_at. We can address

this bottleneck using a data structure!

We need a data structure that allows us to quickly insert new values, ask for its smallest value, and update its

smallest value. A heap works—that’s priority_queue in C++, or the heapq library in Python.

Now each simulation runs in O(n lg k), and so our overall running time is O(n2 lg n), which should be fast enough

for the first four subtasks.

Testing fewer values

Is there a way to avoid testing all values of k from 1 to n? Yes!

Return to the question, “Can k instructors service all students in the queue by time T?” If the answer is yes, then

it will remain yes even if we make k larger; if the answer is no, then it will remain no even if we make k smaller.

The answer to the original problem is the smallest k for which the answer is yes, so we can binary search to find

this k. Using binary search, we only need to test O(lg n) different values of k.

This gives us an overall running time of O(n lg2 n). The solution presented here should still pass comfortably under

the time limit for all subtasks, even in Python, since binary heaps have a low constant factor.

1


