
Injurious Company

First of all, note that the H and V moves act totally independently of each another. Therefore, we can solve the x

and y coordinates separately and then combine our answers. For the rest of the editorial, we only consider the 1D

case. We’ll give some remarks on implementation towards the end.

We are given a sequence K1,K2,K3, . . . ,Kn. A value x is called constructible if there exists,

±k1 ± k2 ± k3 ± · · · ± kn = x,

where 1 ≤ ki ≤ Ki for all i, and each one can be (independently) added or subtracted from the sum. Given some

x, is it constructible?

We will make the following claim, and then prove it constructively (so the details of the proof can be almost-directly

adapted into code and submitted as our solution). Let S =
∑

Ki.

• It is necessary that −S ≤ x ≤ S, otherwise it is not constructible (this part is hopefully clear).

• If there exists at least one index t such that Kt ≥ 2, then all integers in this range are constructible.

• Otherwise, if Ki = 1 for all i (and so S = n), then only the integers with the same parity (even or odd) as n

are constructible.

The outline of our proof is as follows:

• We first show that all integers from n to S are constructible; by flipping all the signs, all integers from −S to

−n are also constructible.

• We then determine which integers from −(n− 1) to (n− 1) are constructible.

n to S

So, let’s start by showing that all values from n to S are constructible.

• Begin with the configuration +1 + 1 + 1 · · ·+ 1 = n

• Then, repeat the following step as many times as possible:

◦ Select a non-maximal ki (i.e. one whose value is not yet Ki) and increment its value by +1.

• This process terminates on K1 +K2 +K3 + · · ·+Kn = S, when all terms have been “saturated”

• Since the value of the expression increases by +1 at each step, we have shown that all integer values from n

to S are attainable since we “passed by” all of them along the way1.

By flipping all the signs from + to -, this tells us that −S to −n are also all constructible as well.

1This is a sort of “discrete intermediate value theorem.”
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−(n− 1) to (n− 1)

What about the values from −(n− 1) to n− 1? Let’s split into cases.

All elements are 1

Consider the expression:

±1± 1± 1 · · · ± 1 = x,

where there are n ones. By choosing each ± sign correctly, we can satisfy this equation if and only if −n ≤ x ≤ n

and x has the same parity as n.

Proof: The proof uses a similar “discrete IVT” technique as earlier.

• Begin with the configuration −1− 1− 1− · · · − 1 = −n.

• Then, repeat the following step as many times as possible:

◦ Select a 1 whose sign is - and flips its sign to +

• This process terminates on +1 + 1 + 1 + · · ·+ 1 = n, i.e. when we have selected + for all terms.

• Since the value of the expression increases by +2 at each step, we have shown that all values from −n to n

with the same parity as n are attainable, since we “passed by” all of them along the way.

However, also using a parity argument, any numbers in this range with a different parity from n cannot be

constructed—changing any of the ± signs in the expression will not change the parity of the sum, so it is im-

possible for us to attain any parity different from the one we started with (with is that of n).

There exists a > 1 element

If we have at least one Kt such that Kt ≥ 2, then all integers from −(n − 1) to n − 1 are constructible. Just use

the construction from earlier, slightly tweaked:

• Suppose there exists an index t such that Kt ≥ 2

• Set ki = 1 for all i ̸= t.

• Using the construction in the previous case, choose the ±1s appropriately in order to construct a value “neat

x”, and then use kt to exactly attain x. More precisely:

◦ If −(n− 3) ≤ x ≤ n− 1...

⊕ If x− 1 has the same parity as n− 1, then construct that, and then add kt = 1

⊕ Else, x− 2 has the same parity as n− 1, so construct that, and then add kt = 2

◦ Else, x = −(n− 1) or x = −(n− 2).

⊕ If x = −(n− 1), construct −(n− 3) using the ones, and then subtract kt = 2.

⊕ Else, x = −(n− 2). Similarly, construct −(n− 3) using the ones, but then subtract kt = 1.
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Implementation Notes

I will end on some remarks for how I coded the model solution for this problem. Implementation choices and styles

may differ, but I am reasonably happy with the “neatness” of my approach.

This section will probably make more sense once you’ve actually skimmed through my source code.

First of all, I made a function construct(x: int, moves: list[Move]) that solves the 1D case of the problem.

Then, I filtered the H and V moves into separate lists, and then solved each case independently.

More precisely, I implemented a class Move that contains each move’s Ki and diri information, and also contains

the ki and chosen sign for each move (I convert from sign to NSEW only at the end). What the construct function

does is mutate the Moves given to it, i.e. the information about the chosen ki and sign is attached to the Move itself.

This is nice because the Move objects in the filtered lists passed to the construct function are references to the

same objects in the original list. So, when I must output my construction, it’s easy for me to still do so in the

correct order, since I just refer to the original version of the list (which still has all the Moves in the correct order).

Finally, you’ll notice that I use a lot of helper classes—in particular, a fondness for Enum over naked string literals.

You don’t have to do this in comp prog, but I do it in work for a reason (it helps prevent errors from stupid typos).

It also prevents natural places to put methods like “flip this sign” or “convert a sign to a compass direction”.
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