A

In plain terms, we want to check if there is an intersection between the segments [a,b) and [c,d), where it is
guaranteed that a < b and ¢ < d.

We can derive a simple criterion, through the following chain of logic:

e If b < ¢, then clearly the answer is NO.
e If d < a, then clearly the answer is NO.
e On the other hand, if ¢ < b and a < d, then you can actually check that the answer is YES!
o To convince yourself of this “intuitively”, just draw a picture, and you’ll see that these two constraints
force an intersection.

o Slightly more formally, you can check that:

- If a < ¢, then [c, b) belongs to both intervals.
- If ¢ < a, then [a, d) belongs to both intervals.

o Checking that these intervals have nonzero length and satisfy the above claims is left as a simple exercise
in inequalities for a reader who wants to practice wrangling symbols. Working formally is an important
skill to practice, especially since drawings can occasionally be misleading; we just won’t dwell on it here.

The idea is to gain some footing by identifying necessary conditions, and then showing that what we have is
(hopefully) sufficient.

Thus, the problem is ezactly equivalent to just checking that ¢ < b and a < d both hold!

a, b, ¢, d = map(int, input().split())

print(
IIYESII
if c < band a < d
else "NO"

)

B

Let’s consider the most straightforward brute force approach. For each integer ¢ in [420,1140), check one-by-one if
there exists any interval [e;, [;) such that ¢ € [e;, [;); if so, then someone is in the room, and if not, then the room is
empty. Count all such ¢ for which no one is in the room.

This is definitely correct, but is it efficient enough? Well...

e There are 1140 — 420 = 720 minutes ¢ to check

e For each such ¢, we (in the worst case) have to go over all n intervals to check if any of them contain ¢, totalling
~ 720n operations

e Since n < 1000, that means our program never has to do more than ~ 7.2 x 10° operations

e Because 7.2 x 10% < 108, our program is indeed more than fast enough, even in a slow language like Python.

So yes, problem solved! The bounds are generous enough that we don’t need to overcomplicate things.

n = int(input())

intervals = [
[int(x) for x in input().split()]
for _ in range(n)

total = 0
for t in range (420, 1140): # [420, 1140)
if not any(
e <=t <1
for e, 1 in intervals

total += 1

print (total)

For an explanation of what the any function is doing at a more primitive level, you can refer to Problem B in this
tutorial.

https://noi.ph/wp-content/uploads/2023/11/Abakoda_2023_Round_2-1.pdf?x71985
https://noi.ph/wp-content/uploads/2023/11/Abakoda_2023_Round_2-1.pdf?x71985

20

21

22

23

24

25

26

27

28

29

30

K

This is basically the same as Problem B, except the bounds are big enough to prohibit our previous solution:
(68400 — 25200) x (3 x 10%) >> 108, so the brute force solution would perform too many operations and be too slow.

However, we note that 68400 — 25200 = 43200 is still manageably small. For each integer time ¢ in [25200, 68400),
is there a “fast” way for us determine if the room is empty?

Yes! In fact, more strongly, we can determine the exact number of people in the room at each second using a very
natural idea. Simulate the state of the room as time passes. Let’s keep track of the number of people in the room
over time, and update this number whenever someone exits or leaves.

Initially, let there be 0 people in the room. Now, for each integer ¢ € [25200, 68400), in order, do the following:

e Each interval with e; =t corresponds to someone entering the room at time ¢; add 1 to the number of people
in the room, for each.

e Each interval with [; = ¢ corresponds to someone leaving the room at time ¢; subtract 1 from the number of
people in the room, for each

e Now, if there are currently 0 people in the room, add +1 to the total number of seconds when the room is
empty.

To quickly count the number of intervals with an e; = ¢ (and similarly for counting [; = t), we can pre-process and
use a data structure dict (in Python) or map (in C++).

from collections import defaultdict
import io, os
input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline

n = int(input())

intervals = [
[int(x) for x in input().split()]
for _ in range(n)

START = 25200
END = 68400

defaultdict --- if a key is not found, make a new entry for it whose value is 0
just_entered_count = defaultdict(int)
just_exited_count = defaultdict(int)

for e, 1 in intervals:
just_entered_count[e] += 1
just_exited_count[1] += 1

total = 0
curr_count = 0
for t in range(START, END): # [START, END)
curr_count += just_entered_count[t]
curr_count -= just_exited_count[t]
if curr_count ==
total += 1

print(total)

D

This problem can be solved using a family of techniques called greedy algorithms, which just means there is a “simple
rule” for determining who to prioritize. Once you solve more problems, you will become more adept at identifying
the “smell” of a problem that is amenable to greedy techniques.

Before we delve into the answer, let’s take a moment to appreciate the non-trivial-ness of the fact that this problem
can be solved by a simple rule, by first looking at some wrong “simple rules” and a counterexample for each one.
e Prioritize the people with the earlier start times, i.e. sort by e;
e Prioritize the people with the shortest use times, i.e. sort by |s; — ¢;]
In the first bullet, we can imagine someone who starts at the beginning of the day, and then hogs the book all day.

For the second bullet, we can imagine that it’s possible for someone to only use the book for a brief amount of time,
but with very unfortunate timing that causes them to conflict with two other possible borrowers.

| | []
L O OO O | | |

Seems like any simple rule is too simple, right? Surely we could always construct some sort of wacky counterexample
to stop any naive ideas... and yet a simple rule does exist that lets us solve the problem!

Prioritize the people with the earlier end times, i.e. sort by e;. To elaborate:

e Sort the intervals according to non-decreasing order of the e; values
e Then, process each interval in that order:

o If it does not conflict with any previously accepted intervals, accept it.

o Otherwise, reject it.

Intuitively, an earlier end time is always better, because then the book is free again at a sooner time.

e Let freed_at be the e value of the last interval that we picked.

e We can see that the next interval (s,e) causes a conflict if and only if s < freed_at; in words, if we try to
start a new interval before the book has been freed by the last borrower, we get a conflict.

e From here, we see that having a smaller freed_at value is always more preferable.

From this, we can conclude that deviating from the greedy plan is never worth it.

Suppose there is an interval that conflicts with our currently-accepted choices.

If we want to pick it, we would have to give up all of the previously-accepted choices that conflict with it, so

our “score” can never improve, it only stays the same or gets worse.

But why would you do that? Is it ever worth it? The only thing we’ve achieved is making freed_at even
bigger... which leaves us in a worse state that before.

Therefore, there is no good reason for us to deviate from the greedy plan.

20

21

22

freed
at

n = int(input())

This time, also remember the index of each interval

intervals = [
(i, [int(x) for x in input().split()])
for i in range(1, n+1)

Sort, according to "smaller 1[i] first"
def smaller_1_first(interval):

i, (e, 1) = interval

return 1
intervals.sort (key=smaller_l_first)

accepted = []
freed_at 420
for i, (e, 1) in intervals:
if freed_at <= e:
accepted.append (i)
freed_at =1

print(len(accepted))
print (*accepted)

freed
at

If you swap, the score decreases or doesn't change, but the book
becomes free at a later time, which is a worse position than what we

started with. So, there is no reason to ever swap.

