
Summer SEMs

Subtask 1

Claim: The square-error minimizer of any non-empty sequence is just its average value.

Proof. Let f(x) be the total square error of x with respect to some sequence [v1, v2, . . . , vn], so

f(x) =

n∑
i=1

(x− vi)
2.

Let’s do some manipulations on this summation, starting with expanding out the square in each summand:

f(x) =

n∑
i=1

(x− vi)
2

=

n∑
i=1

(x2 − 2xvi + v2i)

= x2
n∑

i=1

1− 2x

n∑
i=1

vi +

n∑
i=1

v2i

= nx2 − 2

(
n∑

i=1

vi

)
x+

n∑
i=1

v2i .

Recall that the values [v1, v2, . . . , vn] are all constant with respect to f . Thus, f is actually a quadratic polynomial

in terms of x.

We know that if a > 0, then the value of the quadratic ax2 + bx + c is minimized at its vertex, when x = −b/2a.

Since n > 0, that tells us that the minimum of f(x) is achieved at

x =
− (−2 (

∑n
i=1 vi))

2n
,

or,

x =

∑n
i=1 vi
n

,

which, familiarly, is the average of the sequence. ■

Remark: This is actually the primary mathematical reason for why averages are so ubiquitous in probability and

statistics! It being the square-error minimizer gives us a rigorous notion of what it means to “be in the center” of

a set of points.

Note that this gives us our proof that n!×SumSEMs(a) is always an integer. Each summand is an average, meaning

it looks like (sum of integers)/k, where k is the length of a sublist. Since 1 ≤ k ≤ n, we are guaranteed that n!/k is

an integer, and therefore all summands become integers after multiplying by n!.

It may be a bit tedious, but for the first subtask, you can (with the aid of a calculator) compute a1, a2, a3, a4, a5,

and then find the averages of each of its sublists. There are only 5(5 − 1)/2 = 10 sublists, so this may be a bit

tedious (especially since the numbers are big), but with a calculator, it’s still doable to compute this by hand.

1

Subtask 2

The rest of this tutorial assumes a familiarity with working with multiplicative inverses modulo a prime, in order

to handle terms like 1/k modulo 998244353. If you’re not familiar, you can Google those keywords for resources;

the author would like to suggest his writeup here.

For all remaining subsections, we will also assume that the values [a1, a2, . . . , an] have just been directly computed

by your computer using a simple loop.

For this subtask, our approach is to just directly implement our “get the average of all sublists” brute force so that

a computer can do it for us. You could do something like this:

1 # pseudocode

2

3 n = 1600

4 MOD = 998244353

5

6 a = [...] # generate a

7 n_fac = ... # precompute n! mod MOD

8 mult_inverse = [...] # precompute mod mult. inverses; can't just do 1/k, remember

9

10 ans = 0

11 for l in 1, 2, 3, ..., n:

12 for r in l, l+1, ..., n:

13 subtotal = 0

14 for i in l, l+1, ..., r:

15 subtotal += a[i]

16 subtotal %= MOD

17

18 ans += subtotal * mult_inverse[r-l+1] % MOD

19 ans %= MOD

20 print(ans * n_fac % MOD)

How many operations are performed by this algorithm? It’s a bit more nontrivial to analyze, but you could say

something like this:

• It iterates over all sublists of the sequence

• To process a sublist whose length is some k, this solution perform ∼ k operations (to go over the elements

one-by-one and add them add together)

• There are n− k + 1 sublists whose length is k

• Thus, the total number of operations being performed is roughly

n∑
k=1

k(n− k + 1) =
n3

6
+

n2

2
+

n

3
.

Many computer scientists would be comfortable with just bounding above the efficiency of their program:

• Note that there are three nested loops, where each of ℓ and r and i could go from 1 to n (the inner loops are

more restricted than this, but that’s okay, we’re just putting an upper bound). The innermost loop only does

one addition and modulo operation.

• Thus, the total number of operations being performed is < n× n× n = n3.

Computer scientists are typically happy with a bound like this, since it’s good enough for rule-of-thumb estimates—

both analyses give the running time as a cubic function of n, so the estimated amount of work should be roughly the

2

https://drive.google.com/file/d/10LD7JXmjY5qzM1trj_cf87mYY7K1DM2-/view?usp=drive_link

same, up to a constant factor. More importantly, the magnitudes will be the same, so we can get a ballpark-estimate

of how long this would take to run.

If n = 1600, then n3 ≈ 4 × 109, so even with a slow language like Python, it seems likely that we are within the

terminate-within-one-minute ballpark.

Subtask 3

Thinking like a computer scientist, our goal is to bring our running time down from a cubic function of n down to

a quadratic function of n. That should dramatically speed up the efficiency of our program, enough that we could

claim the points for the third subtask.

Our analysis revealed that the cubic running time comes from the fact that there are three nested loops. If we can

shave off one of those loops, then we’re good.

The key insight is to realize that there is a lot of overlap between the sums we’re computing, so it’s rather wasteful

to start from scratch every time. Let range_sum(l, r) = a[l] + a[l+1] + ... + a[r]. Note that

range_sum(l, r) = range_sum(l, r-1) + a[r].

In words, if you already have a partial sum and want to include the next element r in the sum, then you don’t have

to restart the entire sum from scratch; you can just add a[r] to what you have so far.

This gives rise to the following solution:

1 # pseudocode

2

3 n = 16000

4 MOD = 998244353

5

6 a = [...] # generate a

7 n_fac = ... # precompute n! mod MOD

8 mult_inverse = [...] # precompute mod mult. inverses; can't just do 1/k, remember

9

10 ans = 0

11 for l in 1, 2, 3, ..., n:

12 subtotal = 0

13 for r in l, l+1, ..., n:

14 subtotal += a[r]

15 subtotal %= MOD

16

17 ans += subtotal * mult_inverse[r-l+1] % MOD

18 ans %= MOD

19 print(ans * n_fac % MOD)

You can check that for each value of ℓ and r, the value of subtotal at that point in the loop is precisely a[l] +

a[l+1] + ... + a[r] using the partial sums (or cumulative sums) idea.

By similar analysis as in subtask 2, this algorithm performs ∼ n2/2+n/2 operations. Or, more simply, the number

of operations is bounded above by ∼ n2. Either case gives us a quadratic function. Since 160002 = 256000000, even

a slow language like Python should finish within a minute.

3

Subtask 4

Again thinking like a computer scientist, our goal is to bring our running time down from a quadratic function of n

down to some subquadratic function, such as one linear in n.

There are ≈ n2/2 sublists of a sequence of length n, which should inform our approach and way of thinking.

Fundamentally, we cannot any more use solutions that examine each sublist of a one-by-one.

Instead, we have to start thinking about the individual elements of a. For example, maybe this works: for each ai,

what is its contribution to the final sum? Let’s try writing out an example with n = 6:

SumSEMs(a) =
a1
1

+
a2
1

+
a3
1

+
a4
1

+
a5
1

+
a6
1

+
a1 + a2

2
+

a2 + a3
2

+
a3 + a4

2
+

a4 + a5
2

+
a5 + a6

2

+
a1 + a2 + a3

3
+

a2 + a3 + a4
3

+
a3 + a4 + a5

3
+

a4 + a5 + a6
3

+
a1 + a2 + a3 + a4

4
+

a2 + a3 + a4 + a5
4

+
a3 + a4 + a5 + a6

4

+
a1 + a2 + a3 + a4 + a5

5
+

a2 + a3 + a4 + a5 + a6
5

+
a1 + a2 + a3 + a4 + a5 + a6

6

If we rearrange this sum so that we collect the like ai terms:

SumSEMs(a) =

(
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6

)
a1

+

(
1

1
+

2

2
+

2

3
+

2

4
+

2

5
+

1

6

)
a2

+

(
1

1
+

2

2
+

3

3
+

3

4
+

2

5
+

1

6

)
a3

+

(
1

1
+

2

2
+

3

3
+

3

4
+

2

5
+

1

6

)
a4

+

(
1

1
+

2

2
+

2

3
+

2

4
+

2

5
+

1

6

)
a5

+

(
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6

)
a6.

That looks like it has a stunning amount of structure that we can leverage! If we examine only the numerators, we

get the following grid pattern:

1 1 1 1 1 1

1 2 2 2 2 1

1 2 3 3 2 1

1 2 3 3 2 1

1 2 2 2 2 1

1 1 1 1 1 1

Note that in the grid above:

• The top half is a mirror image of the bottom half

• For i such that 2 ≤ i ≤ n/2, the next row can be found by taking the previous row and then “adding +1” to

some contiguous band of values.

We’ll leave rigorously proving this pattern as an exercise to you. The numerator in the ith row’s something/k is

given by counting the number of times that ai appears in a sublist of length k.

4

More formally, let ci be “the coefficient of ai”. For convenience, let c0 = 0. Then, for 1 ≤ i ≤ n/2:

ci = ci−1 +

(
1

i
+

1

i+ 1
+ · · ·+ 1

n− i+ 1

)
Finally, computing these sums of reciprocals can also be done using running sums. Let ri be the value added to

ci−1 at each step, so for 1 ≤ i ≤ n/2:

ri =
1

i
+

1

i+ 1
+ · · ·+ 1

n− i+ 1
.

Note that r1 = 1/1 + 1/2 + 1/3 + · · ·+ 1/n. Then, for 2 ≤ i ≤ n/2:

ri = ri−1 −
1

i− 1
− 1

n− (i− 1) + 1
.

All in all, we get the following solution. Here, coeff and row_delta are variables such that for each i in the loop,

coeff = ci and row_delta = ri is always maintained.

1 # pseudocode

2

3 n = 16 * 10**6

4 MOD = 998244353

5

6 a = [...] # generate a

7 n_fac = ... # precompute n! mod MOD

8 mult_inverse = [...] # precompute mod mult. inverses; can't just do 1/k, remember

9

10 ans = 0

11 coeff = 0

12 row_delta = None

13 for i in 1, 2, 3, ..., n//2:

14 if i == 1:

15 row_delta = mult_inverse[1] + mult_inverse[2] + ... + mult_inverse[n]

16 else:

17 row_delta -= mult_inverse[i-1]

18 row_delta -= mult_inverse[n-(i-1)+1]

19

20 coeff += row_delta

21

22 ans += a[i] * coeff % MOD

23 ans += a[n-i+1] * coeff % MOD # for the bottom half

24 ans %= MOD

25

26 print(ans * n_fac % MOD)

There is now only a single loop from 1 to n that is doing a handful of operations at each iteration. Thus, the number

of operations performed by this solution should be linear (i.e., directly proportional) with respect to n, and so it

should be fast enough even when n = 1.6× 107.

5

