
Mod Powers

Subtask 1

Alice’s password must look like some alternating series of consonants and vowels. Recall that there are 21 consonants

and 5 vowels.

There are two cases to consider. In everything that follows, let a represent “any vowel” and let b represent “any

consonant”.

If n is even, then there are two possible “shapes”:

ababab

bababa

which we see depends on if our first letter is a consonant or vowel. In either case, the solution is the same: we need

to independently choose values for each of the n/2 consonants and n/2 vowels. Thus, the formula for even n is:

5n/2 × 21n/2 + 21n/2 × 5n/2,

or

2× (21× 5)n/2

If n is odd, then there are still two possible “shapes”:

abababa

bababab

which again depends on if our first letter is a consonant or vowel.

• If the first letter is a consonant, then choose which of the 21 consonants it should be.

• If the first letter is a vowel, then choose which of the 5 vowels it should be.

Now we just need to decide the remaining n − 1 letters. In either case, we end up with (n − 1)/2 consonants and

(n− 1)/2 vowels whose values we must independently decide. Thus, the formula for odd n is:

21× 5(n−1)/2 × 21(n−1)/2 + 5× 21(n−1)/2 × 5(n−1)/2,

or

(21 + 5)× (21× 5)(n−1)/2.

It may be a bit tedious, but you can still manually compute the value by hand when n = 10, using this formula.

Just use a calculator to speed things up.

1

Subtask 2

Directly implement this formula in code, where we implement exponentiation as repeated multiplication—compute

ab by multiplying a to itself b times. Note that because of combinatorial explosion, the raw answer is going to be

huge—so you must take modulos at each intermediary step.

1 # pseudocode

2

3 n = 13**7

4 MOD = 10**9 + 7

5

6 # n is odd here

7 ans = 21+5

8 for (n-1)/2 times:

9 ans *= 21*5

10 ans %= MOD

11 print(ans)

Even a slow language like Python can do on the order of ≈ 107 operations per second, so this should terminate

within a few seconds for the n in subtask 2.

Subtask 3

If n is very very large, then “literally do something n/2 times” is way too slow. We need a faster exponentiation

algorithm so that we can use our magic formula.

If you Google “fast exponentiation algorithm”, you’ll find many results for algorithms that achieve the result in

only ∼ log2 n multiplications. Such algorithms usually (explicitly or implicitly) leverage the binary representation

of the exponent. The Wikipedia article calls the technique, “exponentiation by squaring”.

The author would also like to suggest his writeup here which gives a recursive formulation of the algorithm.

Pick your favorite algorithm and implement it, and you will solve subtask 3 in a fraction of a second.

2

https://drive.google.com/file/d/1zTTVo1W8XwpYdEEeW-iete2aJX7IzoZc/view?usp=drive_link

Subtask 4

Dealing with power towers

Let’s suppose that we already have an algorithm that allows us to compute ab mod m in ∼ log2 b steps. Unfortu-

nately, the “power tower” in subtask 4 is absolutely massive, and even log2

(
77

72023
)
is astronomically large.

We need a way of trimming the size of the exponent.

One classic approach is to use Euler’s Theorem. Let a and m be coprime integers. Then,

aφ(m) ≡ 1 (mod m)

where φ is Euler’s Totient function, and φ(m) counts the number of positive integers less than or equal to m which

are coprime to it. There are many proofs of Euler’s Theorem online which you can refer to.

Let b ≥ ϕ(m). Euler’s Theorem tells us that:

ab+φ(m) ≡ ab ≡ ab−φ(m) (mod m),

which inductively means that,

ab ≡ ab+kφ(m) (mod m),

for any non-negative integer k such that b+ kϕ(m) ≥ 0.

But since b mod φ(m) = b− ⌊b/φ(m)⌋φ(m), we conclude that:

ab ≡ ab mod φ(m) (mod m).

Returning to power towers, that means, for example:

ab
cd

e

≡ ab
cd

e

mod φ(m) (mod m).

In other words, we know that we can compute ab
cd

e

mod m efficiently if we know how to compute bc
de

mod φ(m)

efficiently. But that’s just a slightly smaller power tower problem! So, recursively, we can just use the same trick

again!1 For example here, you can evaluate bc
de

mod φ(m) by evaluating cd
e

mod φ(φ(m)), and so on.

Repeatedly apply this Euler’s Theorem trick to shave levels off your power tower until you hit a case where the

exponent is small enough that a fast exponentiation algorithm can do the trick.

1You have to be a bit careful when considering the cases where your base is not coprime to your modulus

3

Dividing by 2

Going back to our problem, recall that we want to compute (since n = 77
72023

is odd):

26× 105(n−1)/2 (mod p),

where p = 109 + 7. From the power-tower trick we just discussed, we know that this task can be done if we can

compute,

(77
72023

− 1)/2 (mod φ(p)),

which (as we said) is done by repeating the Euler’s Theorem trick. There’s one final hiccup we need to address—

φ(109 + 7) is even, meaning that 2 does not have a unique multiplicative inverse modulo φ(p). How do we divide

by 2 now?

We need one more trick. Suppose a is divisible by some d, and

a ≡ r (mod dm)

Then, we can show that r is also divisible by d, and that

a

d
≡ r

d
(mod m).

All this means for us is that we need to compute:

77
72023

− 1 (mod 2 φ(p)),

which we do using already-established power tower techniques. This result can be divided by 2 to get what we

wanted.

Proof. Apply the division algorithm where we divide a by dm. There is a unique pair of integers q and r such that

0 ≤ r < dm and

a = (dm)q + r.

Note that dmq is divisible by d; so if a is divisible by d, then the sum on the RHS must also be divisible by d, and

so r must be divisible by d as well.

Dividing both sides by d:

a

d
= mq +

r

d
.

and here, 0 ≤ r

d
< m.

Now, apply the division algorithm where we divide
a

d
by m. There is a unique pair of integers q′ and r′ such that

0 ≤ r′ < m and

a

d
= mq′ + r′.

But note that
(
q,

r

d

)
satisfies these criteria for (q′, r′); by the uniqueness of (q′, r′), we therefore conclude that

r′ =
r

d
, which is what we wanted to show. ■

4

Computing totients

One standard way of computing the totient function of large integers is to use the fact that the totient function is

multiplicative. You can do the following steps to evaluate φ(m):

• First, prime factorize m = pe11 pe22 . . . pekl . There are simple factorization algorithms that run in ∼
√
m steps,

and that’s fast enough for our purposes.

• Now, φ is multiplicative, meaning

φ (pe11 pe22 . . . pekl) = φ (pe11)φ (pe22) . . . φ (pekk)

• Finally, the totient function is easy to compute for prime powers. By straightforward combinatorics, you can

show that φ(pe) = pe − pe−1, when p is a prime and e is an integer ≥ 1. So, use this formula for each prime

power, then multiply the results.

There are many explanations online for why φ is multiplicative (or what it means for a function to be multiplicative,

in general).

An alternatively incredibly low-effort solution is to realize that for this problem, we only need to evaluate φ(p),

φ(2φ(p)), and φ(φ(2φ(p))). Since you only need to evaluate the totient function at a handful of points, you could

also just ask WolframAlpha to perform these computations for you.

5

