
I Really Love Olympiad Algebra

(25 to 60 pts) Brute Force

With almost no insights, you can already get 60 points by what is basically a brute force.

Let (i.e. it's the expression given

in the problem statement but without the).

Just iterate over all such that and then flag all of its different

outputs as interesting.

vector<bool> interesting(R+1, false);

for(int x = 1; p(x, 1, 1) <= R; x++){

for(int y = 1; p(x, y, 1) <= R; y++){

for(int z = 1; p(x, y, z) <= R; z++){

 interesting[p(x, y, z)] = true;

 }

 }

}

Note that if any of , , or increases, then also increases.

• So, for example, if , then it will also be greater than for any larger

values of , so we can stop searching.

• If (where is minimal), then it will also be greater than for any

larger values of or , so we can stop searching

• Similar logic applies for and .

If you iterate over all , , and such that each one is less than or equal to some fixed

upper bound, then you can get to points. But if you do something similar to the code

snippet above, where e.g. the value of affects the bounds for and , then you can get

 points!

Despite the three nested for loops, we claim that this actually runs in . The

argument is quite fun, and they key is that we don't use a fixed bound for all three loops;

rather, the values of the outer loops are used to further restrict the range of values visited

by the inner loops. Our argument boils down to the fact that , so our

analysis will be equivalent to enumerating all triples such that .

We invite you to ask for more details in the Discord if you're curious!

(80 to 93 points)

Note that the given polynomial can be factored into this expression:

p(x, y, z) = xyz + 4xy + 2xz + yz + 8x + 4y + 2z

k

x, y, z p(x, y, z) ≤ R

x y z p(x, y, z)

p(x, y, z) > R R

z

p(x, y, 1) > R z R

y z

p(x, 1, 1) x

x y z

25 45

x y z

60

O(R ln R)2

p(x, y, z) ≈ xyz

(x, y, z) xyz ≤ R

(x + 1)(y + 2)(z + 4) − 8 + k

Noting that and are constants, we rephrase our problem as follows.

We say that a number is interesting if there exist positive integer , , and such that

. Then, we wish to count the interesting numbers from

 to .

Consider this informal motivation. Suppose for some number , we can write it as .

Then, is interesting because we can choose and and .

Therefore it seems that most numbers are interesting, with a few exceptions that might

make this argument fall apart.

• doesn't have enough factors, so it can't be written as

• Even if does have enough factors, they might not all be large enough (because

note that and and must all be positive)

Claim. A positive integer is not interesting if any of the following apply.

•

• is a prime

• is a product of two primes

• is multiplied by a prime.

•

Proof. As a reminder, we wish to find three integers , , and such that,

•

•

•

•

The proof is by case bash. Consider the number of prime factors of .

Case 1: 1 prime factor

If is prime, then only one of can be greater than . So, always impossible.

Case 2: 2 prime factors

If has two prime factors, then only two of can be greater than . So, always

impossible.

Case 3: 3 prime factors

Suppose where without loss of generality, assume

and these values are all prime.

Now, let's case bash on the value of , the "middle" value.

If , then the task is impossible, because both and must be , but here, only

is possibly . Note that is forced.

If , then the task is possible if and only ; we need at least one value (for

), and if , then we can assign and and . Note that can only

be or .

If , then , and so the task is always possible, by assigning and

k 8

n x y z

n = (x + 1)(y + 2)(z + 4) L −

(k − 8) R − (k − 8)

n n = abc

n x = a − 1 y = b − 2 z = c − 4

n n = abc

n

a − 1 b − 2 c − 4

n

n < 30

n

n

n 4

n = 32

a b c

n = abc

a ≥ 2

b ≥ 3

c ≥ 5

n

n a, b, c 1

n a, b, c 1

n = p ×1 p ×2 p3 2 ≤ p ≤1 p ≤2 p3

p2

p =2 2 b c ≥ 3 p3

≥ 3 p =1 2

p =2 3 p ≥3 5 ≥ 5

c p ≥3 5 a = p1 b = p2 c = p3 p1

2 3

p ≥2 5 p ≥3 p ≥2 5 a = p1

 and .

Thus, the following cases are impossible:

•

•

•

Case 4: 4 prime factors

Suppose where without loss of generality, assume

 and these values are all prime.

Note that , so we can always assign and . If , then

the task is possible because we can assign .

Otherwise, suppose that . Then, there are only few cases we need to check. For each

one, we can prove or disprove their interestingness by hand since there are only so many

ways to distribute the prime factors.

• (impossible)

• (impossible)

• (possible: , ,)

• (possible: , ,)

• (possible: , ,)

Thus, only the following cases are impossible:

•

•

Case 5: prime factors.

Suppose where without loss of generality, assume

 and these values are all prime.

If , then , so we can always assign and , and

.

Otherwise, suppose that . This actually only leaves us with one case:

•

which we can show by hand to be impossible.

Case 6: or more prime factors.

Suppose where without loss of generality, assume

 and these values are all prime, and also .

Then, the task is always possible by assigning , , and .

In summary

Here are all the impossible cases:

•

•

b = p2 c = p3

n = 2 × 2 × prime

n = 2 × 3 × 3

n = 3 × 3 × 3

n = p ×1 p ×2 p ×3 p4 2 ≤ p ≤1

p ≤2 p ≤3 p4

p ×2 p ≥3 3 a = p1 b = p ×2 p3 p ≥4 5

c = p4

p <4 5

2 × 2 × 2 × 2

2 × 2 × 2 × 3

2 × 2 × 3 × 3 a = 2 b = 3 c = 2 × 3

2 × 3 × 3 × 3 a = 2 b = 3 c = 3 × 3

3 × 3 × 3 × 3 a = 3 b = 3 c = 3 × 3

n = 2 × 2 × 2 × 2

n = 2 × 2 × 2 × 3

5

n = p ×1 p ×2 p ×3 p ×4 p5 2 ≤

p ≤1 p ≤2 p ≤3 p ≤4 p5

p ≥5 3 p ×4 p ≥5 5 a = p1 b = p ×2 p3 c =

p ×4 p5

p <5 3

n = 2 × 2 × 2 × 2 × 2

6

n = p ×1 p ×2 p ×3 p ×4 p ×5 q 2 ≤

p ≤1 p ≤2 p ≤3 p ≤4 p5 q ≥ 2

a = p1 b = p ×2 p3 c = p ×4 p ×5 q

prime

prime × prime

•

•

•

•

•

•

But note that if and and , then , so we can clean this up a

bit:

•

•

•

•

•

leaving only as a special exception.

For , we can find all numbers that satisfy any of the above criteria by using a

modified Sieve of Eratosthenes, which will run in .

For the subtask where , you either need to be have a good implementation with

low constant factors, or you can use a linear sieve instead.

(100 pts) Number Theory Black Magic

There is a somewhat-standard technique for computing the sums of number theoretic

functions in sublinear time.

It involves abusing the following two properties of :

• If is fixed, then this expression only evaluates to at most different values as

varies, half of which are "big" and half of which are "small".

•

You can prove both of these from the Division Algorithm (i.e. the theorem).

These two facts allow us to create a crazy DP with only states, which allows us to

compute the sum in sublinear time.

For the actual details, you can read the details in this blog: https://codeforces.com

/blog/entry/91632 It exactly details the algorithm for counting the number of primes less

than or equal to some . You can then use this function as a blackbox for counting the

number of semiprimes and squares of primes.

A running time of gets you points. To get points, you need to either

optimize your implementation to have a low constant factor, or implement the

algorithm described in the blog.

4 × prime

18

27

16

24

32

a ≥ 2 b ≥ 3 c ≥ 5 n = abc ≥ 30

less than 30

prime

prime × prime

4 × prime

32

32

R ≤ 5 × 107

O(R ln ln R)

R ≤ 108

floor(n/k)

n 2 n k

floor =⎝
⎛

b

floor (
a

n)
⎠
⎞

floor (
ab

n)

n = pq + r

O()n

n

O(n)3/4 99 100

(n)O 2/3

https://codeforces.com/blog/entry/91632
https://codeforces.com/blog/entry/91632
https://codeforces.com/blog/entry/91632
https://codeforces.com/blog/entry/91632

