
.img of the Artist as Filipino

Actions are Objects

Let's begin with a seemingly-unrelated and pointlessly-abstract observation. What is the

number ? What is the number ? And what does mean?

One person might answer that they are objects, like nouns.

• I have coins.

• I have coins.

• , because if I combine my piles of and coins, I have a pile of coins.

But another person might answer that they are actions, like verbs.

• I will give you coins.

• I will give you coins.

• , because if I give you coins and then give you coins, then that is

equivalent to if I had just given you coins.

Interestingly, both are valid! In modern mathematics, we use numbers to refer to both

objects and actions. The more prescient insight is that we can treat actions like objects.

Much like numbers or ingredients in a recipe, we can take two actions and "combine" them

together in order to get another action.

Functions are Objects

Recall that a function is a mathematical object that takes some input, performs some

calculations with it, and then returns some output. It would be valid for us to say that the

function transforms the input into some output, so we will somewhat interchangeably also

use the word "transformation" to refer to functions.

For example, I can define a function that takes in a square grid as input, and its output is

what the resulting grid would be if I rotated it clockwise.

1---2 | 4---1

| | V | |

| | ----> | |

| | | |

4---3 3---2

Thus, a function can be seen as an action performed on the input. However, recall that we

said that functions are mathematical objects, so we can treat them like objects. We can

define an operation that takes two functions and combines them into another function.

For example, we can think of the "and then" operation. If and are functions, then we

can chain them into one composite function: consider the transformation we get if we first

2 3 2 + 3

2

3

2 + 3 = 5 2 3 5

2

3

2 + 3 = 5 2 3

5

90∘

f g

apply and then apply .

For instance, suppose we are again working with square grids. Let be the transformation,

"Rotate clockwise" and let be the transformation, "Reflect across the vertical axis".

We can chain them together into the composite function, "Rotate clockwise and then

reflect across the vertical axis".

 --- .

1---2 | 4---1 1---4

| | V | . | | |

| | ----> | . | ----> | |

| | | . | | |

4---3 3---2 2---3

 .

But we can think of a simpler name for this composite function, no? By inspection, we see

that "Rotate clockwise and then reflect across the vertical axis" is equivalent to if we

had just performed the action, "Reflect across the main diagonal."

\

 1---2 1---4

 |\ | | |

 | \ | ----> | |

 | \| | |

 4---3 2---3

 \

The and then operation might be more familiar to you under the name function

composition, although you have to be careful with the order---because of modern function

notation, is equivalent to f and then g applied to x (it's reversed because

modern functions with nested arguments are evaluated inside-out).

Rotations and Reflections on a Square

In the problem, we are given four types of transformations in the input:

• L Rotate counterclockwise

• R Rotate clockwise

• H Reflect horizontally (across the vertical axis)

• V Reflect vertically (across the horizontal axis)

What we can do is pull out some pen and paper and record what happens when we

combine all possible pairs of transformations using the and then chain operation. Literally, I

encourage you to pick up a labeled square and then try flipping it around in your hands and

seeing what happens.

Here are some highlights:

f g

f

90∘ g

90∘

90∘

g(f(x))

90∘

90∘

• If we apply L and then R, this is the same as doing nothing.

• If we apply H and then H, this is the same as doing nothing.

• If we apply L and then L, this is the same as rotating .

• If we apply H and then V, this is the same as rotating .

• If we apply R and then H, this is the same as reflecting across the main diagonal.

• If we apply H and then R, this is the same as reflecting across the anti-diagonal.

Note that the last two bullets show that order matters with the "and then" operation.

Let's encode these new transformations that we've discovered using the following

symbols:

• 0 Do nothing

• U Rotate

• D Reflect across the main diagonal

• A Reflect across the anti-diagonal

Let's create a "multiplication table" that summarizes all possible results from combining

our original four operations. Let the row indicate which transformation is done first, and let

the column indicate which transformation is done second.

 | L R H V

L| U 0 A D

R| 0 U D A

H| D A 0 U

V| A D U 0

Actually, what if we made a more complete multiplication table that also includes the

newly discovered transformations?

 | 0 L U R D V A H

0| 0 L U R D V A H

L| L U R 0 H D V A

U| U R 0 L A H D V

R| R 0 L U V A H D

D| D V A H 0 L U R

V| V A H D R 0 L U

A| A H D V U R 0 L

H| H D V A L U R 0

I'm sure you're already able to see some patterns in the table (ordering the

transformations in this way was an intentional choice on my part).

It turns out that there's something nice about this set of transformations {0, L, U, R,

D, V, A, H}:

180∘

180∘

180∘

• If I combine any two transformations from that set using the "and then" operation, I

get another element of that set. With fancy jargon, this set is closed under the "and

then" operation.

• There is a "do nothing" transformation represented by 0, such that 0 and then x is

the same as x and then 0 which is the same as x.

• Each transformation has an "inverse" such that applying it and then its inverse is

equivalent to the "do nothing" transformation 0.

Additionally, there is one more crucial property that you can verify, which I call

"parentheses don't matter".

• Let x and y and z be transformations. Then, (x and then y) and then z gives the

same result as x and then (y and then z).

• Thus, it makes sense for us to drop the parentheses and just say x and then y and

then z.

• Note that the order of the transformations still has be preserved though.

You can try substituting in different transformations into x, y, and z, and you will see that it

holds true. You might be aware that this property has the fancy name of associativity, and

it is an inherent property of the and then operation.

(Subtask 1) Implementation

What does this mean for our problem?

For convenience, let xy be understood to mean "Apply x and then apply y" (i.e. the and

then is implicit and can be omitted).

• Any command string can be "simplified" to one of eight possible transformations by

repeatedly "reducing" the expression, just like we would with arithmetic.

◦ For example, LDRV = LDA = LU = R (you can check this).

• Therefore, the answer to any ? query will always be only one of 8 possibilities.

• Thus, only once at the start, we can apply each transformation to the given mosaic,

and then store the resulting hash value as a result of this transformation.

• Answering each ? query then reduces to finding which transformation it corresponds

to, and then lookup up its corresponding precomputed hash value.

We can also use our multiplication table to make the implementation of all these

transformations easier! Let orig be the original grid and let res be the post-

transformation grid.

• D is simple to implement: we just have res[i][j] = orig[j][i].

• H is simple to implement: we just have res[i][j] = orig[i][n-1-i] (assuming

indexing).

But note that all other transformations can be expressed in terms of D and H!

• 0 = DD (in practice, though, 0 is trivial to implement)

• L = HD

• U = HDHD

• R = DH

0

• D = D

• V = DHD

• A = HDH

• H = H

So we only need to implement D and H, and all other transformations can be obtained by

chaining H and D together with and then (function composition). With fancy jargon, we say

that H and D generate {0, L, U, R, D, V, A, H}.

(Subtasks 2 and 3) Standard Data Structures which play

nicely with "and then"

How again do we use prefix sum tables in order to compute a[L] + a[L+1] + ... +

a[R]?

• Precompute all the prefixes P[i] = a[1] + a[2] + ... + a[i]

• Thus, a[L] + a[L+1] + ... + a[R] = -P[L-1] + P[R]

But think about it---what properties of addition did we even end up using here?

• Every number has an additive inverse

• (Implicitly) Addition is associative, so we can ignore parentheses.

But hey! Our set {0, L, U, R, D, V, A, H} under the and then operation also has

inverses and is associative!

• Precompute all the prefixes P[i] = s[1] and then s[2] and then ... and

then s[i]

• Thus, s[L] and then s[L+1] and then ... and then s[R] = (P[L-1]

inverse) and then P[R].

Prefix "sums" allow us to solve subtask , where there are no updates to the reference

string, in per question.

Similarly, if you look at the implementation of segment trees, you'll note that addition is

not at all that important to its core details (which is in fact why you might encounter

problems which ask for range min or range XOR queries on segment trees).

If you implement a segment tree using the and then operation on these transformations,

you can solve subtask in per question and update.

(100 pts) Permutations are transformations too

We might have an inkling that we need to create a lazy segment tree of some kind in order

to process range updates. But how?

Subtask gives us a hint. Consider the simpler problem---what if the relabeling is always

done to entire reference string?

The key is to note that the in each update query is always a permutation. From

combinatorics, you might be familiar with permutations as objects, but actually, you can

also think of permutations as actions.

x −x

2

O(1)

3 O(lg n)

5

p

Let be a permutation of the integers from to . Then, we can define a

function such that (or you might prefer the notation). In words,

it "sends" each to .

For example, p = 2431 induces a function where

•

•

•

•

It's common to visualize these by drawing the input in a row on top, and the output in a row

on the bottom, and then connecting each input to its output.

And hey! These are functions! So we can apply the and then operator to combine two

permutations together. For example, if p = 2431 and q = 3412, then p and then q =

4213, which is best visualized in the following diagram.

Here are some facts that you will want to verify for yourself:

• Combining any two permutations with the and then operation gets you another

permutation. So, using the jargon, the set of permutations is closed under the

operation and then.

• There is a permutation which corresponds to the "do nothing" transformation

• Every permutation has a corresponding "inverse"

Only the first fact is important for our solution, but the other two are also worth verifying

p = p p p p1 2 3 4 1 4

φ φ : k ↦ pk φ(k) = pk

k pk

φ

φ(1) = 2

φ(2) = 4

φ(3) = 3

φ(4) = 1

for yourself because it shows that permutations have a similar structure to our grid

transformations from earlier!

This leads to a solution for Subtask . Instead of permutations on to , consider

permutations of LRHV (but our discoveries from earlier still apply because this is completely

equivalent).

• Create 24 different reference strings, one for each of the permutations of

elements (where the original reference string is relabeled using each permutation).

• From these, create 24 different prefix "sum" tables

• Let the variable curr correspond to the "current" permutation of LRHV (initialized to

the do nothing permutation)

• Whenever an update ! 1 m p query appears, update the current permutation by

applying curr = curr and then p.

• Whenever a ? query appears, consult the prefix sum table of the permutation that

corresponds to the current relabeling of LRHV.

For example, if the reference string is LLRHVR, then...

• The current permutation is LRHV (do nothing)

• After receiving ! 1 6 RLVH, the current permutation becomes LRHV and then RLVH

= RLVH. So, for any questions, we consult the prefix sum table of the reference string

RRLVHL

• After then receiving ! 1 6 HRLV, the current permutation becomes RLVH and then

HRLV = RHVL. So, for any questions, we consult the prefix sum table of the reference

string RRHVLH.

• ...and so on

This allows us to solve subtask in per update and per question.

To get full points, we apply this same insight to a segment tree with lazy propagation.

• Let each node in the segment tree have versions, one for each permutation.

• Let each node's lazy flag be in the form of a curr permutation, for that node's

current permutation.

• If you were to lazily "push" an update onto the entire interval represented by a node,

we only need to update its lazy flag using the and then operation.

• Whenever you "pull" (i.e. recompute the value of some node), you reset its curr to

5 1 4

4! 4

5 O(24) O(1)

24

the do nothing permutation and you also have to recompute each of the

versions of itself.

• Otherwise, treat it like a normal lazy segment tree.

This solution runs in per query of either kind.

In order to fit it under the time limit, you may also need to do some or all of the following

optimizations:

• Represent permutations as integers from to instead of literally as a list of

elements.

• Precompute the "multiplication table" for the permutations instead of

computing it ad hoc.

• Be careful to only pull (recompute) a node when it is necessary, since have to do it

times.

Group Theory

We've demonstrated how addition of integers, rotations and reflections of a square, and

permutations of a group of objects all share some common features:

• They're associative

• They have "do nothing" elements

• They have inverses

These are all examples of what mathematicians call groups. Groups are usually the

introductory topic of the wide field of math known as Abstract Algebra. They're incredibly

interesting, and I encourage you to study them on your own time! I offer two main

arguments for why they're so interesting.

First is a pragmatic argument. As we saw with prefix sum tables and segment trees, we can

create algorithms that are more general. We identified that some, but not all, features of

the integers were key to making those ideas work. For example, addition of integers is

commutative, but we recognized that the same technique could still be applied even to

objects that aren't. By being as abstract as possible, distilling the objects needed to their

very essence, we are able to create ideas that are more useful due to being more widely

applicable to a variety of different objects. If you stick to computer science, you'll recognize

these ideas when you start implementing template classes, interfaces and abstract classes,

and (if you dare) the entire rich field of Type Theory.

Second is an aesthetic argument. By assuming only those three axioms about a set and an

operation, we are able to create a robust theory of mathematics that's fit for a class

spanning an entire semester (and possible more). Isn't it interesting how so many rich and

powerful results can be derived from just three simple rules? These are the simplest

structures needed for us to meaningfully do algebra, and all the same, we actually have so

much that we can say about them! If you stick with mathematics and computer science,

then you will see more structures like rings, fields, and even automata and Turing machines,

whose beating heart is the stunning amount of complexity that can be reaped from a few

simple rules.

I hope this problem got to concretely demonstrate some of these arguments to you, and I

24

O(24 lg n)

0 23 4

24 × 24

24

hope you feel enticed to learn more about groups and abstract algebra!

