
A brute force strategy is sufficient here. Let n be the length of the binary string s.

Suppose the value of c has been selected; then, we do the following.

• Do the “text wrapping” to convert the binary string into a grid. This takes O(n) time, since the characters

in the grid are just the same n characters from s, just rearranged.

• Check each of the 16× 16 subgrids and count how many are Manlilinlang patterns. This also only takes O(n)

time because there are ≤ n subgrids to check (consider all possible top-left corners), and checking if a subgrid

matches a Manlilinlang pattern only takes a fixed O(16) = O(1) amount of time.

If c is fixed, then the answer can be computed in O(n). If we try this for all values of c from 1 to n and just keep

track of the best result, then the total running time is O(n2). But n ≤ 750, so this very comfortably passes.

Note that we can save time by only trying c from 4 to ≈ n/4 (because otherwise there wouldn’t be enough columns

or rows), but this does not change the asymptotic running time of O(n2), and is not necessary in order to pass

within the time limit.

1 n = int(input())

2 s = input()

3

4 amogus1 = [

5 '1000',

6 '0011',

7 '0000',

8 '1010'

9 ]

10 amogus2 = [

11 '0111',

12 '1100',

13 '1111',

14 '0101'

15 ]

16

17 best = 0

18 for c in range(1, n+1):

19 rows = [s[i:i+c] for i in range(0, n, c)]

20 rows[-1] = rows[-1].ljust(c, ' ') # pad the last row with empty space

21 r = len(rows)

22

23 total = 0

24 for i in range(r - 3):

25 for j in range(c - 3):

26 if any(

27 all(rows[i+k][j:j+4] == amogus[k] for k in range(4))

28 for amogus in [amogus1, amogus2]

29 ):

30 total += 1

31 best = max(best, total)

32

33 print(best)

34

1


