
A

We need to check if the first 9 or last 9 characters of s are equal to the given pattern.

You can use list slicing in Python, or s.substr in C++ in order to easily grab a contiguous substring of some string

s.

1 s = input()

2 pattern = '...---...'

3

4 print("SOS" if pattern == s[:len(pattern)] or pattern == s[-len(pattern):] else "Hay SOS!")

5

1

B

We need to check if the given pattern appears as a contiguous substring anywhere in s. In Python, this is easily

accomplished with the in operation. In C++, you can use s.find

1 s = input()

2 pattern = '...---...'

3

4 print("SOS" if pattern in s else "Hay SOS!")

5

But how does this work behind the scenes? What is its running time? For educational purposes, let’s peek behind

the curtain.

Let |w| denote the length of some string w. For convenience, let n := |s|.

The string s has |s| − |pattern| + 1 contiguous substrings that are the same length as the given pattern (think of

how many valid starting indices there are). Let’s just check all of them and see if any are equal to our pattern.

1 s = input()

2 pattern = '...---...'

3

4 def is substring(s, pattern):

5 for i in range(len(s) - len(pattern) + 1):

6 if s[i : i+len(pattern)] == pattern:

7 return True

8 return False

9

10

11 print("SOS" if is substring(s, pattern) else "Hay SOS!")

Is string comparison free? Well, it’s not a primitive operation. For educational purposes, let’s unpack that as well.

How does string comparison work?

• If the two strings are of different lengths then they are definitely not equal.

• Otherwise, the two strings are equal if and only if they match at each position.

You can imagine that if the strings are long, then checking that they match at all positions can be expensive,

because we have to check all the indices. At worst, we end up checking almost all of the indices, which means the

running time is O(|pattern|).

1 s = input()

2 pattern = '...---...'

3

4 def string eq(a, b):

5 if len(a) != len(b):

6 return False

7 for i in range(len(a)):

8 if a[i] != b[i]:

9 return False

10 return True

11

12 def is_substring(s, pattern):

2

13 for i in range(len(s) - len(pattern) + 1):

14 if string eq(s[i : i+len(pattern)], pattern) :

15 return True

16 return False

17

18

19 print("SOS" if is_substring(s, pattern) else "Hay SOS!")

This is what’s really happening under the hood when you use in or find between two strings. Thus, the running

time of our solution is O(|pattern|(n− |pattern|))1. Since the pattern of ...---... in our problem is only length

9, then the running time of our solution is O(9(n− 9)), which we simplify to O(n), which is acceptable.

However, in general, it may be possible that |pattern| ≈ n/2, which would cause our running time to degenerate to

O
(
n
2 (n− n/2)

)
, which is O(n2/4), which simplifies to O(n2), which is too slow! In these cases, we would need to

use a more advance technique like hash functions and rolling hashes. But that’s overkill for this simple problem, so

we won’t discuss that any further here.

1We can drop the +1 inside because remember, Big O Notation is just a rough estimate for large input sizes

3

K

We want to check if the given pattern ...---... appears as a not-necessarily-contiguous subsequence in s.

A solution for this special pattern

I claim that ...---... appears as a subsequence in s if and only if there are exactly three dashes between the first

three dots and the last three dots.

1 s = input()

2 n = len(s)

3

4 prefix_dots = 0

5 first_third_dot_at = None

6 for i in range(n):

7 if s[i] == '.':

8 prefix_dots += 1

9 if prefix_dots == 3:

10 first_third_dot_at = i

11 break

12

13 suffix_dots = 0

14 last_third_dot_at = None

15 for i in range(n-1, -1, -1):

16 if s[i] == '.':

17 suffix_dots += 1

18 if suffix_dots == 3:

19 last_third_dot_at = i

20 break

21

22 between_dashes = 0

23 if first_third_dot_at is not None:

24 for i in range(first_third_dot_at+1, last_third_dot_at):

25 if s[i] == '-':

26 between_dashes += 1

27

28 print("SOS" if between_dashes >= 3 else "Hay SOS!")

29

After all, when doing a subsequence check, why not just always take the earliest three dots in s as the first three

dots of the pattern? If I take earlier dots, then there’s “more of s left over”, which makes it more likely that the

rest of the pattern is contained in s. Having “more of s” is never worse!

4

The same argument applies for always taking the last three dots.

We only have to loop over the characters of s at most 3 times. Therefore, our solution runs in O(n).

A general solution for subsequence checks

This solution works for any s and any pattern, even with arbitrary letters and characters.

Remember when we said why not just always take the earliest three dots, because it’s never worse? Think about

it... doesn’t that just always apply, in general?

Consider the first letter of the pattern. Find its earliest occurrence in s. Why not just always take this? It doesn’t

benefit us to wait, because having more of s is always better.

Then, repeat—for the next letter of the pattern, find its earliest occurrence in the remaining part of s... and so on.

Either we exhaust all the letters of the pattern (in which case yes, the pattern is a subsequence of s) or we exhaust

all the letter of s first (in which case no, the pattern is not a subsequence of s).

1 s = input()

2 pattern = '...---...'

3

4 j = 0

5 for i in range(len(s)):

6 if s[i] == pattern[j]:

7 j += 1

8 if j == len(pattern):

9 break

10

11 print("SOS" if j == len(pattern) else "Hay SOS!")

Since there is only one loop, it’s clear that the running time is O(n+ |pattern|).

5

D

First of all, we would like to begin by reminding you about the magic number: as a coarse rule of thumb, a Python

program can run somewhere on the order of magnitude of ≈ 107 operations per second, and a C++ can run an

order of magnitude of ≈ 108 operations per second. If we want our code to run under the time limit, then we need

to make sure its operation count is roughly under this magic number.

We want to count how many integers satisfy both of these conditions:

• It lies between L and R (inclusive)

• It’s an SOS number.

The most straightforward idea might look something like this: For each number from L to R, test each one for being

an SOS number. See the following pseudocode.

1 total = 0

2 for each integer k from L to R:

3 if is_SOS(k):

4 total += 1

5 print(total)

There are R − L + 1 numbers to check, but in the worst case, L = 1 or some other small number, so we just say

that there are O(R) candidate numbers. For each one, its check can take up to O(no. of digits) operations (and we

can show that this is O(log10(R)). Therefore, the running time is O(R log10 R). Unfortunately, with R possibly up

to 1015, this is way too slow.

The problem is that there are just too many integers from L to R. And if we look at the sample input, there aren’t

even that many SOS numbers from 1 to 1015 in the first place! Most of our checking just goes to waste.

”The integers from L to R” makes up our search space, because we are searching for SOS numbers in this range.

The problem is that our search space is too large and too sparse. Is there maybe a better set that we can search

through?

Well... how about we swap the search space and the check? See this pseudocode.

1 total = 0

2 for each SOS number k that is <= 1e15:

3 if L <= k <= R:

4 total += 1

5 print(total)

How large is this new search space? Well, SOS numbers ≤ 1015 must be strings of length at most 15 digits, each of

which is either 5 or 0. Actually, because of how leading zeroes work with our number system, we can just generate

all such strings with exactly 15 digits. Because each digit can be one of two possible values, there are exactly

215 = 32768 such strings, which is not too large.

Of course, not all these strings are SOS numbers, but that’s fine! Just filter out only the ones with 505 as a substring.

There’s still wasted work, but at least 215 is a tolerable amount of work.

We can enumerate all SOS numbers using recursive backtracking.

1 all_SOS_numbers = []

2 def generate_SOS_numbers(i, SOS):

3 if i == 0:

4 if '505' in SOS:

6

5 all_SOS_numbers.append(int(SOS))

6 else:

7 generate_SOS_numbers(i-1, SOS + '5')

8 generate_SOS_numbers(i-1, SOS + '0')

9

10 B = 15

11 generate_SOS_numbers(B, '')

As a special hack, since we only care about binary strings, we can use the binary representations of the integers

from 0 to 215 − 1 in order to generate all 15-length patterns with two symbols. This technique is called bitmasking

and has loads of other applications as well.

The following code uses the ”bitwise operations” left shift and bitwise AND, which you can look up. Many languages

also may have their own built-in ways to extract the binary representation of an integer. For Python, you can use

bin, and for C++, you can use std::bitset.

1 all_SOS_numbers = []

2

3 B = 15

4 for mask in range(1 << B):

5 SOS = ''

6 for i in range(B):

7 if mask & (1 << i): # if ith bit is 1

8 SOS += '5'

9 else:

10 SOS += '0'

11

12 if '505' in SOS:

13 all_SOS_numbers.append(int(SOS))

In summary, this is our final code:

1 all_SOS_numbers = []

2

3 ... # choose your preferred method of generating the SOS numbers

4

5 L, R = map(int, input().split())

6 total = 0

7 for SOS in all_SOS_numbers:

8 if L <= SOS <= R:

9 total += 1

10 print(total)

Let B = log10(R) be the number of digits in the largest SOS number to consider. Then, our solution runs in

O(B2B), because there are 2B two-character strings of length B, and testing each one for SOS-ness takes O(B)

time, which is fast enough.

Bonus: The recursive backtracking solution can be modified so that the solution runs purely in O(2B). Not that

it’s too important, because the bounds are small enough, but... can you think of how?

Bonus for experienced participants: Suppose there are T different test cases, each with their own L and R and

asking how many SOS numbers lie in that range. Here, 1 ≤ T ≤ 2× 105, so T can be quite large. Can you think of

a fast way to answer each of these test cases? Say, suppose you should be able to answer each test case in O(log(R))

time. Hint: You can do some pre-processing before answering all the test cases.

Bonus Bonus for the very experienced participants: Suppose that 1 ≤ L ≤ R ≤ 102×105 , i.e. L and R can have up

7

to 2 × 105 digits. As is standard in comp prog, suppose we only want the answer modulo 109 + 7. Can we answer

this in O(B) (not O(2B))?

8

