
GRAPH THEORY 2
What is a shortest path?
Given a graph 𝐺, a source vertex 𝑢 in 𝐺, and a destination 

vertex 𝑣 in 𝐺, a shortest path from 𝑢 to 𝑣 is a path in 𝐺
from 𝑢 to 𝑣 such that the total of the weights of all edges 

in the path is minimized. If 𝐺 is unweighted, minimize the 

number of edges in the path (BFS).

What is a minimum cost spanning tree?
Given a graph 𝐺, a spanning tree of 𝐺 is a connected 

subgraph of 𝐺 that is a tree and contains all of its vertices. A 

minimum cost spanning tree of 𝐺 is a spanning tree with the 

minimum possible total weight of all edges included in it. All 

spanning trees in an unweighted graph are considered 

minimum cost spanning trees.
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Single Source Shortest Path (SSSP)

• Dijkstra’s Algorithm

• Bellman-Ford Algorithm

All Pairs Shortest Path (APSP)

• Floyd-Warshall Algorithm

• SSSP from each source

A

Determining Shortest Paths and Minimum Cost Spanning Trees
There are standard algorithms used to determine the shortest paths and minimum 

cost spanning trees within graphs.

Minimum Cost Spanning Tree (MCST)

• Prim’s Algorithm

• Kruskal’s Algorithm

• Boruvka’s Algorithm (not covered)



Notes on Shortest Path Problems
There are two typical types of shortest path problems:

• Single Source Shortest Path (SSSP) – look for the shortest path from one given 

vertex to any or all other vertices in the graph.

• All Pairs Shortest Path (APSP) – look for the shortest path between multiple pairs 

of vertices in the graph.

What algorithms to use depends on the nature of the given problem.

Most shortest path problems have cases where the end vertex is not reachable from 

the start vertex. In these cases, typically there is a default “not found” output like 

printing a distance of -1. All the algorithms we will discuss cover these cases by 

simply leaving the unreachable vertex unprocessed or never changing the initial 

sentinel value assigned to its distance.

Some shortest path problems require you to print the actual shortest path instead of 

just the distance between the vertices. All the algorithms we will discuss will have 

some way of “updating” current knowledge on the distances of each vertex. These 

are typically matched with updating a “parent” variable to allow us to trace back the 

path we actually took. More on this in the implementation of each individual algorithm.



Dijkstra’s Algorithm
Dijkstra’s Algorithm finds the shortest path from some given vertex to all other 

vertices in the graph. It is typically used for finding the shortest path between 

two vertices because it is the fastest of the standard shortest path algorithms.

Dijkstra’s Algorithm begins with the 

single source vertex 𝑠 having a 

known distance of 0 from itself and 

all other vertices having an 

unknown distance, typically labeled 

infinity, from 𝑠.
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Dijkstra’s Algorithm
Dijkstra’s Algorithm finds the shortest path from some given vertex to all other 

vertices in the graph. It is typically used for finding the shortest path between 

two vertices because it is the fastest of the standard shortest path algorithms.

The algorithm first “visits” or 

processes 𝑠. The algorithm 

determines the distance of each 

vertex 𝑣 adjacent to 𝑠 if the path 

consists of the edge (𝑠, 𝑣).
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Dijkstra’s Algorithm
Dijkstra’s Algorithm finds the shortest path from some given vertex to all other 

vertices in the graph. It is typically used for finding the shortest path between 

two vertices because it is the fastest of the standard shortest path algorithms.

The algorithm then “visits” or 

processes the vertex closest to 𝑠. 
When visiting a vertex 𝑢, the 

algorithm determines the distance 

of each vertex 𝑣 adjacent to 𝑢 from 

𝑠 if the path includes the edge 

(𝑢, 𝑣). If it is shorter than the 

currently known distance, replace it. 𝑠
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Dijkstra’s Algorithm
Dijkstra’s Algorithm finds the shortest path from some given vertex to all other 

vertices in the graph. It is typically used for finding the shortest path between 

two vertices because it is the fastest of the standard shortest path algorithms.

The algorithm continues visiting the 

vertices in order of their known 

distances from 𝑠, making sure not 

to repeat vertices already visited 

beforehand.
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Dijkstra’s Algorithm
Dijkstra’s Algorithm finds the shortest path from some given vertex to all other 

vertices in the graph. It is typically used for finding the shortest path between 

two vertices because it is the fastest of the standard shortest path algorithms.

The algorithm ends when the 

destination vertex is reached or all 

vertices have been visited. 
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Dijkstra’s Algorithm
Dijkstra’s Algorithm works on the idea that, since we visit vertices in order of 

their distance from the source vertex, it is impossible for us to find a shorter 

path to some vertex we have previously visited that visits the vertex we are 

currently visiting. Because of this, when we visit a vertex for the first time, we 

are guaranteed to have found a shortest path to it already. Note that because of 

this, Dijkstra’s Algorithm does not work for graphs with negative edge weights.
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Dijkstra’s Algorithm Sample Implementation (𝑶 𝑽𝟐 + 𝑬 )
//N is the maximum possible number of vertices in the input.

//n is the number of vertices for that test case.

//In this sample, our source vertex is 0.

bool vis[N]; int dist[N]; vector<int> adj[N], adjw[N];

int main(){

//read graph into adj, adjw

//set vis[0]..vis[n-1] to false

//set dist[1]..dist[n-1] to inf or -1 (sentinel value)

dist[0] = 0;

while(true){

int next = -1;

for(int i=0; i<n; i++){

//add extra check if sentinel is -1

if(!vis[i] && (next == -1 || dist[i] < dist[next]))

next = i;

}

if(next == -1) break; //no more unvisited vertices

vis[next] = true;

for(int i=0; i<adj[next].size(); i++){

if(vis[adj[next][i]]) continue;

// or if dist[adj[next][i]] == -1 if sentinel is -1

if(dist[next] + adjw[next][i] < dist[adj[next][i]]){

dist[adj[next][i]] = dist[next] + adjw[next][i];

}

}

}

//dist[u] will contain the distance from 0 to u

}

//For constructing the path itself,

//we add a parent variable to each vertex.

//This acts like the "previous" vertex in the path

int parent[N];

//By default, the parents do not exist,

//so we set them to some sentinel value

//set parent[0]..parent[n-1] to -1

//Whenever we update the distance of a vertex,

//we know that its shortest path will contain that

//edge and the current vertex being processed is

//the previous vertex in that path.

parent[adj[next][i]] = next;

//Reconstruct the path by following each vertex’s

//parent until we return to the source.

vector<int> path;

int cur = end;

while(cur != source){

path.push_back(cur);

cur = parent[cur];

}

//path will contain the actual path in reverse.



Dijkstra’s Algorithm Sample Implementation (𝑶 𝑽 log𝑬 + 𝑬 )
Dijkstra’s Algorithm can be sped up by using a priority queue to find the next 

closest vertex to the source.
//define a new comparator for the priority queue 

struct cmp{

bool operator()(int a, int b){

return dist[a] > dist[b]; //get the smallest distance first

}

};

//after setting all the starting values

priority_queue<int, vector<int>, cmp> pq;

pq.push(0); //we start with the source vertex

while(pq.size() > 0){ //instead of while(true), we only need to check if the priority queue is nonempty

int next = pq.top(); pq.pop(); //instead of searching, we can just get the next element in pq

if(vis[next]) continue; //the same vertices will appear multiple times

vis[next] = true;

//process as before but push the new vertices into the priority queue

for(int i=0; i<adj[next].size(); i++){

if(vis[adj[next][i]]) continue;

if(dist[next] + adjw[next][i] < dist[adj[next][i]]){

dist[adj[next][i]] = dist[next] + adjw[next][i];

pq.push(adj[next][i]);

}

}

}



Bellman-Ford Algorithm
The Bellman-Ford Algorithm also finds the shortest path from some given 

vertex to all other vertices. It is slower than Dijkstra’s algorithm, making it less 

commonly used. However, it covers graphs with negative weight edges. 

Like Dijkstra’s Algorithm, the 

Bellman-Ford Algorithm also begins 

with the single source vertex 𝑠
having a known distance of 0 from 

itself and all other vertices having 

an unknown distance, usually

labeled infinity, from 𝑠.
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Bellman-Ford Algorithm
The Bellman-Ford Algorithm also finds the shortest path from some given 

vertex to all other vertices. It is slower than Dijkstra’s algorithm, making it less 

commonly used. However, it covers graphs with negative weight edges. 

It then iterates through every edge 

in the graph to determine if the 

known distance from 𝑠 to the 

adjacent node can be “relaxed” or 

reduced.
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Bellman-Ford Algorithm
The Bellman-Ford Algorithm also finds the shortest path from some given 

vertex to all other vertices. It is slower than Dijkstra’s algorithm, making it less 

commonly used. However, it covers graphs with negative weight edges. 

This is repeated multiple times. 

During each iteration, vertices have 

their distances from 𝑠 reduced, and 

so are able to relax the vertices 

adjacent to them on the succeeding 

iterations. 
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Bellman-Ford Algorithm
The Bellman-Ford Algorithm also finds the shortest path from some given 

vertex to all other vertices. It is slower than Dijkstra’s algorithm, making it less 

commonly used. However, it covers graphs with negative weight edges. 

If there are no negative weight 

cycles (which means no vertex will 

have a distance of −∞), this will 

continue until an iteration where no 

more distances can relaxed. Here, 

the shortest paths for each vertex 

has been found.
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Bellman-Ford Algorithm
The Bellman-Ford Algorithm works on a similar idea as Dijkstra’s Algorithm. 

That is, the shortest path to some vertex can be found by repeatedly finding 

better solutions until such a solution can no longer be found. However, 

Dijkstra’s algorithm assumes that adding a new edge to a path can only 

increase its length, while the Bellman-Ford Algorithm makes no assumption 

and instead processes every vertex and every edge on each iteration. This 

allows it to handle negative edge weights.

Assuming the non-existence of negative weight cycles, it can be proven that 

the Bellman-Ford Algorithm will take no more than |𝑉| − 1 iterations of 

relaxation, where |𝑉| is the number of vertices in the graph. This is because 

the shortest path from 𝑠 to any other vertex can take no more than 𝑉 − 1
jumps. The algorithm however, will continue indefinitely if a negative weight 

cycle exists. Because of this, if a relaxation still occurs on the |𝑉|’th iteration,

it is guaranteed that the graph has a negative weight cycle, and the algorithm 

can safely be terminated.



Bellman-Ford Algorithm Sample Implementation (𝑶(𝑽𝑬))
//N is the maximum possible number of vertices in the input.

//n is the number of vertices in that test case.

//E is the maximum possible number of edges in the input.

//e is the number of edges in that test case.

//In this sample, our source vertex is 0.

int dist[N], a[E], b[E], w[E];

int main(){

//read graph into a, b, w

//set dist[1]..dist[n-1] to inf or -1 (sentinel value)

dist[0] = 0;

//run the relaxation n times

for(int i=0; i<n; i++){

bool relaxed = false;

for(int j=0; j<e; j++){

if(dist[a[j]]+w[j] < dist[b[j]]){

dist[b[j]] = dist[a[j]]+w[j];

relaxed = true;

}

//repeat with reversed a, b for undirected graphs

}

if(!relaxed) break; //no more newly relaxed vertices

else if(i == n-1){

//negative weight cycle exists

}

}

//dist[u] will contain the distance from 0 to u

}

//For constructing the path itself,

//we add a parent variable to each vertex.

//This acts like the "previous" vertex in the path

int parent[N];

//By default, the parents do not exist,

//so we set them to some sentinel value

//set parent[0]..parent[n-1] to -1

//Whenever we update the distance of a vertex,

//we know that its shortest path will contain that

//edge and the current vertex being processed is

//the previous vertex in that path.

parent[adj[next][i]] = next;

//Reconstruct the path by following each vertex’s

//parent until we return to the source.

vector<int> path;

int cur = end;

while(cur != source){

path.push_back(cur);

cur = parent[cur];

}

//path will contain the actual path in reverse.



On Reconstructing Negative Weight Cycles in Directed Graphs
If a vertex 𝑢 is relaxed during the 𝑛th iteration, it is necessarily part of some 

negative weight cycle. In undirected graphs, finding negative weight cycles is 

trivial because any negative weight edge necessarily forms a cycle with itself 

(𝑎 → 𝑏 → 𝑎). However, this is not the case in directed graphs.

When using the method where we store the parents of each vertex, finding a 

cycle from 𝑢 to itself may not necessarily work. The parent array will contain 

at least one negative weight cycle, but this is not guaranteed to be the 

negative weight cycle containing 𝑢. This is because parent entries may be 

rewritten for the same vertex multiple times by multiple different negative 

weight cycles in the same iteration.

When reconstructing a negative weight cycle, we have to check all the parent 

entries of all the vertices to find the cycle.



Floyd-Warshall Algorithm
The Floyd-Warshall Algorithm solves the All-Pairs Shortest Path problem. In other words, it finds the 

shortest path between any two nodes in the graph. It does this by iterating through all vertices and 

checking if it can serve as an intermediate node to a shorter path between some other source and 

destination vertices. 
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int dist[n][n];

for(int k=0; k<n; k++){

for(int i=0; i<n; i++){

for(int j=0; j<n; j++){

if(dist[i][j] > dist[i][k] + dist[k][j])

dist[i][j] = dist[i][k] + dist[k][j]; 

}

}

}

If the path passing through vertex 𝑘 (𝑝𝑎𝑡ℎ 𝑖, 𝑘 + 𝑝𝑎𝑡ℎ(𝑘, 𝑗)) is shorter than 

the direct path from 𝑖 to 𝑗, then let us take the path through 𝑘 instead of the 

direct one. 
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Let 𝑘 = B, 𝑖 = 𝐴, 𝑗 = 𝐷. We know that 𝑑𝑖𝑠𝑡 𝐴 𝐵 = 1 and 

𝑑𝑖𝑠𝑡 𝐵 𝐷 = 3. This means 𝑑𝑖𝑠𝑡 𝐴 𝐵 + 𝑑𝑖𝑠𝑡 𝐵 𝐷 = 4, which is 

shorter than 𝑑𝑖𝑠𝑡 𝐴 𝐷 = 5. Thus the new value of 𝑑𝑖𝑠𝑡 𝐴 [𝐷] is 

4. We do this for all sources and destinations and then move on 

to the next intermediate node. When the algorithm ends, the 

adjacency matrix should contain the shortest path between any 

two nodes in the graph. 



SSSP from each source
There are cases where the Floyd-Warshall Algorithm will not work for APSP. This is 

because either 𝑂 𝑉3 is too slow or 𝑉2 memory is too large.

To solve these problems, we can apply an SSSP algorithm from each starting vertex. 

Since there are 𝑉 vertices in a given graph, Dijkstra’s Algorithm will take 𝑂(𝑉2 log𝐸 +
𝑉𝐸) time to complete. The actual time it takes for Dijkstra’s Algorithm to complete will 

also be significantly reduced when the graph itself is sparse (doesn’t have many 

edges) or disconnected, while the Floyd-Warshall Algorithm will take the same 

amount of time. It is also typically not necessary to find all pairs of shortest paths, but 

only a large number of them. If a vertex is never the starting vertex of any requested 

pair, then that vertex can be skipped. The same applies for the Bellman-Ford 

algorithm.

What’s the point of using the Floyd-Warshall Algorithm then? It is much easier and 

faster to code than iterating Dijkstra’s Algorithm 𝑉 times and can save a lot of time in 

contests. Dijkstra’s Algorithm also becomes very slow for very dense graphs 

(especially complete graphs) as 𝐸 approaches 𝑉2. The Floyd-Warshall Algorithm 

becomes faster than Dijkstra’s Algorithm for this case.



Notes on Minimum Cost Spanning Tree Problems

Minimum cost spanning tree problems always use undirected graphs. If used 

with directed graphs, the problem is called the minimum cost arborescence 

problem and requires a different algorithm to solve.

A variant of this problem, the minimum cost spanning forest problem, requires 

you to create multiple trees instead of one single tree. Both algorithms to be 

discussed can be used to solve these problems.



Prim’s Algorithm
Prim’s Algorithm finds a minimum cost spanning tree of a graph. 
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Prim’s Algorithm begins with the 

single source vertex 𝑠 being the 

only vertex in the spanning tree and 

determines the cost of adding each 

vertex 𝑢 adjacent to 𝑠 to the tree if 

we take the edge (𝑠, 𝑢).
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Prim’s Algorithm
Prim’s Algorithm finds a minimum cost spanning tree of a graph. 
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It takes the cheapest of these 

vertices and adds it to the spanning 

tree. It then, again, determines the 

cost of adding each vertex adjacent 

to the current vertex being added, 

always keeping track of the edge 

used in the cheapest way. 
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Prim’s Algorithm
Prim’s Algorithm finds a minimum cost spanning tree of a graph. 
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This is repeated until all vertices 

have been added to the spanning 

tree. 
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Prim’s Algorithm
Prim’s Algorithm finds a minimum cost spanning tree of a graph. 
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Once all vertices have been added 

to the spanning tree. All edges in 

the minimum cost spanning tree of 

the graph, and the minimum cost 

spanning tree itself, have been 

found.
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Prim’s Algorithm
Prim’s Algorithm works very similarly to Dijkstra’s Algorithm. In fact, the 

implementation is the same except we set the “distances” in Dijkstra’s 

Algorithm to edge length instead of distance + edge length. This is because 

Prim’s Algorithm works with the same idea – that selecting the next cheapest 

vertex and expanding from there will always give an optimal result.

Prim’s Algorithm will still work on graphs with negative edge weights because, 

unlike Dijkstra’s Algorithm, Prim’s Algorithm only needs to take individual 

edges, instead of entire paths, into account.



Prim’s Algorithm Sample Implementation (𝑶 𝑽𝟐 + 𝑬 )
//N is the maximum possible number of vertices in the input.

//n is the number of vertices for that test case.

//In this sample, our source vertex is 0.

bool vis[N]; int cost[N]; vector<int> adj[N], adjw[N];

int main(){

//read graph into adj, adjw

//set vis[0]..vis[n-1] to false

//set cost[1]..cost[n-1] to inf or -1 (sentinel value)

cost[0] = 0;

int total = 0;

while(true){

int next = -1;

for(int i=0; i<n; i++){

//add extra check if sentinel is -1

if(!vis[i] && (next == -1 || cost[i] < cost[next]))

next = i;

}

if(next == -1) break; //no more unvisited vertices

vis[next] = true;

total += cost[next];

for(int i=0; i<adj[next].size(); i++){

if(vis[adj[next][i]]) continue;

// or if cost[adj[next][i]] == -1 if sentinel is -1

if(adjw[next][i] < cost[adj[next][i]]){

cost[adj[next][i]] = adjw[next][i];

}

}

} //total will contain the cost of the MCST

}

//For constructing the minimum cost spanning tree

//itself, we keep track of which edges are used to

//add vertices to the MCST.

vector<int> adjid[N]; //give edges ids

int edge[N]; //id of the edge used

//This may be implemented many ways.

//Giving edges ids is just one.

//set edge[0]..edge[n-1] to -1

//Whenever we update the cost of a vertex, we use

//the edge currently being processed.

cost[adj[next][i]] = adjid[next][i];

//Reconstruct the minimum cost spanning tree by

//finding all edges used. Most of the time, the

//problem will only ask for the ids of the edges

//used. In this case, we can simply print the ids

//stored in edge[1]..edge[n-1].

//Sometimes the problem asks for the actual edges

//(the vertices and the weight) or other 

//information attached to these edges. In these 

//cases, it could be easier to store the edges in

//an additional edge list or store them as objects.



Prim’s Algorithm Sample Implementation (𝑶 𝑽 log𝑬 + 𝑬 )
Like Dijkstra’s Algorithm, Prim’s Algorithm can be sped up by using a priority 

queue to find the next cheapest vertex to add.
//define a new comparator for the priority queue 

struct cmp{

bool operator()(int a, int b){

return cost[a] > cost[b]; //get the smallest cost first

}

};

//after setting all the starting values

priority_queue<int, vector<int>, cmp> pq;

pq.push(0); //we start with the source vertex

while(pq.size() > 0){ //instead of while(true), we only need to check if the priority queue is nonempty

int next = pq.top(); pq.pop(); //instead of searching, we can just get the next element in pq

if(vis[next]) continue; //the same vertices will appear multiple times

vis[next] = true;

//process as before but push the new vertices into the priority queue

for(int i=0; i<adj[next].size(); i++){

if(vis[adj[next][i]]) continue;

if(adjw[next][i] < cost[adj[next][i]]){

cost[adj[next][i]] = adjw[next][i];

pq.push(adj[next][i]);

}

}

}



Kruskal’s Algorithm
Kruskal’s Algorithm is another method for finding the minimum cost spanning tree 

given a graph. The concept is simple: we start with the the same input graph, but 

without any of the edges. We go through each of the edges, starting with the one with 

least weight. If adding the edge to the graph forms a cycle, we disregard it, otherwise 

we add it to our MCST. We do this until we have gone through all the edges or we 

have added 𝑣 − 1 edges to our graph, forming the MCST.
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Kruskal’s Algorithm
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𝑏 𝑐 6

𝑎 𝑑 8

First, edges are sorted in ascending 

order.  Implementation wise, this 

sorting is usually done implicitly by 

placing all edges in the graph in a 

priority queue. We then poll from the 

queue each time we examine a new 

edge, guaranteeing that we go 

through edges with the lowest 

weight first. 

The edges with the lowest weight in 

the graph are {𝑓, ℎ} and {𝑑, 𝑠}. 
Neither of these edges form a cycle 

when added to our graph. 
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We then proceed to examine more 

edges. {𝑏, 𝑓}, {𝑎, 𝑒} and {𝑠, 𝑔} all 

have a weight of 2. None of these 

edges produce a cycle when added 

to the graph. 
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{𝑎, 𝑏} and {𝑔, 𝑓} both have a weight 

of 3. Adding both these edges to the 

graph, there are still no cycles 

formed, so they are part of our 

MCST. 
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𝑒, 𝑓 , {𝑒, 𝑠} and {𝑏, 𝑒} all have 

weights of 4. We first look at the 

edge {𝑒, 𝑓}. Notice that if we add it 

to the graph, we form the cycle 𝑎 →
𝑒 → 𝑓 → 𝑏 → 𝑎. Thus we should 

disregard the edge 𝑒, 𝑓 .

Similarly, adding the edge {𝑒, 𝑠}
would form the cycle 𝑎 → 𝑏 → 𝑓 →
𝑔 → 𝑠 → 𝑒 → 𝑎, thus we should 

disregard it. 

Adding the edge {𝑏, 𝑒} would also 

form a cycle, 𝑎 → 𝑒 → 𝑏 → 𝑎, thus

we also disregard the edge {𝑏, 𝑒}.
Unexamined Edge

Disregarded Edge

MCST Edge

Under Examination

Would form a cycle!



Kruskal’s Algorithm

𝑠

𝑑

𝑔

𝑎

𝑒

𝑏

ℎ

𝑓

𝑐

4

2

1

5

8

5

3

2

1

3 6

4

6

2

4

Vertex A Vertex B Weight

𝑓 ℎ 1

𝑑 𝑠 1

𝑏 𝑓 2

𝑎 𝑒 2

𝑠 𝑔 2

𝑎 𝑏 3

𝑔 𝑓 3

𝑒 𝑓 4

𝑒 𝑠 4

𝑏 𝑒 4

𝑑 𝑒 5

𝑔 ℎ 5

𝑏 𝑐 6

𝑎 𝑑 8

The edges {𝑑, 𝑒} and {𝑔, ℎ} both 

have a weight of 5. By inspection, 

we can see that adding either edge 

to the graph will result in the 

formation of cycles. We should thus 

disregard both edges. 
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Disregarded Edge

MCST Edge

Under Examination
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The next edge is {𝑏, 𝑐} with a weight 

of 6. Adding this to our graph does 

not form any cycles, thus we add it 

to our MCST. Note that after adding 

{𝑏, 𝑐}, we have added 𝑣 − 1 edges 

to our graph. This means we may 

now end the algorithm.  
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Now that the algorithm has ended, the 

edges that were added to the graph 

will form our final MCST.



Kruskal’s Algorithm Sample Implementation
//N is the maximum possible number of vertices in the input.

//n is the number of vertices for that test case.

struct edge{

int u, v, w; //the two vertices and the weight

edge(int u, int v, int w){

this->u = u; this->v = v; this->w = w;

}

};

struct cmp{

bool operator()(const edge &a, const edge &b){

return a->w > b->w; //priority queue in C++ is max heap

}

};

int main(){

priority_queue<edge, vector<edge>, cmp> pq;

//insert all edges into pq

int total = 0;

int need = n-1;

while(need > 0){

edge cur = pq.top(); pq.pop();

if(!formsCycle(cur)){

//add cur to graph

total += cur.w;

need--;

}

}

//total will contain the cost of the MCST

}



Kruskal’s Algorithm
In order for Kruskal’s Algorithm to work, we need a way to determine if adding 

an edge (𝑢, 𝑣) to the current graph creates a cycle. Since the graph is 

undirected, this is the same as checking whether 𝑢 and 𝑣 are already 

connected and can be easily done using a Breadth-First or Depth-First 

Search. That however would take 𝑂(𝐸) time for each edge, making Kruskal’s 

Algorithm run in 𝑂 𝐸2 + 𝐸 log𝐸 time, which is much slower than Prim’s 

Algorithm.

There is a much faster way for us to determine whether two vertices are 

connected while constructing the MCST using Kruskal’s Algorithm. This is 

called Union-Find or Disjoint Set Union.



Union-Find / Disjoint Set Union
Union-Find or Disjoint Set Union is a method to determine which items from a number 

of mutually disjoint sets (each item is in exactly one set) are part of the same set. It 

has two operations:

• Find – Determine the set an element is part of.

• Union – Combine two sets into one.

This is done by assigning a representative element to each set. Find then returns this 

representative element. To check whether two elements are part of the same set, we 

just check whether their representative elements are the same.

This is done by creating a tree using the elements with the root as the representative 

element. Union then simply sets the parent of one root as the other root, effectively 

combining the two trees.

In Kruskal’s Algorithm, we assign each connected subgraph to a set and the vertices 

as the elements.



Kruskal’s Algorithm Sample Implementation with Union-Find
//N is the maximum possible number of vertices in the input.

//n is the number of vertices for that test case.

struct edge{

int u, v, w; //the two vertices and the weight

edge(int u, int v, int w){

this->u = u; this->v = v; this->w = w;

}

};

struct cmp{

bool operator()(const edge &a, const edge &b){

return a->w > b->w; //priority queue in C++ is max heap

}

};

int main(){

priority_queue<edge, vector<edge>, cmp> pq;

//insert all edges into pq

int total = 0;

int need = n-1;

while(need > 0){

edge cur = pq.top(); pq.pop();

if(!formsCycle(cur)){

//add cur to graph

total += cur.w;

need--;

}

}

//total will contain the cost of the MCST

}

//Keep track of the parent of each vertex

int par[N];

//Follow the parent of the vertex being checked 

//until you reach the root.

int find(int u){

if(par[u] == u) return u;

return find(par[u]);

}

//Set the parent of one root to the other. Merge 

//is used here because union is a reserved keyword.

void merge(int a, int b){

par[find(a)] = find(b);

}

//Since no vertices are connected at the start, each 

//is in its own tree.

//set par[0]..par[n-1] to 0..n-1 (par[i] = i)

//formsCycle(cur) is changed to checking whether

//cur.u and cur.v are in the same tree.

if(find(cur.u) != find(cur.v))

//Adding cur to the graph is just taking the union.

merge(cur.u, cur.v);



Union-Find Optimizations
Find takes 𝑂(𝑉) time, while Union takes 𝑂(𝑉) time if we use Find again or 

𝑂(1) time if we keep track of what Find returned when we first checked the 

parents of 𝑢 and 𝑣. This makes Kruskal’s Algorithm run in 𝑂(𝑉𝐸 + 𝐸 log 𝐸)
time.

Find can be further optimized by replacing the parent of each vertex passed 

in the recursive function with the representative element. This allows the 

vertex to go straight to its tree’s root instead of having to go through each 

parent first.

int find(int u){

if(par[u] == u) return u;

return par[u] = find(par[u]); //reassign before returning

}



Union-Find Optimizations
Union can also be optimized by making the tree with the larger depth the new 

root instead of using either of the two roots. This reduces the height of each 

tree, reducing the number of function calls Find has to go through to reach 

the root of a set.

int depth[N];

int union(int a, int b){

int roota = find(a);

int rootb = find(b);

if(depth[roota] < depth[rootb]){

par[roota] = rootb;

}else if(depth[rootb] < depth[roota]){

par[rootb] = roota;

}else{

par[rootb] = roota;

depth[roota]++;

}

}

int main(){

//set depth[0]..depth[n-1] to 0 before Kruskal’s Algorithm

}



Union-Find Optimizations
It can be proven that using both of these optimizations reduces the running 

time of Find to 𝑂(𝛼−1 𝑉 ) where 𝛼−1(𝑛) is the inverse Ackermann function 

(proof outside of scope), an extremely slowly growing function that, for most 

practical values of 𝑛, is less than 5. This effectively reduces the complexity of 

Union-Find to a small constant.

Using these optimizations, the complexity of Kruskal’s Algorithm reduces to 

𝑂(𝐸 log 𝐸).



On Prim’s and Kruskal’s Algorithms

For most cases, Prim’s and Kruskal’s algorithms are effectively the same in 

terms of running time. Use which one you are more comfortable with.

Any variant of the typical MCST problem that can be covered by one of these 

algorithms can be covered by the other as well. However, the modifications 

necessary to solve the problem may be more complicated for one of them, so 

it is still suggested to be familiarized with both algorithms.



Basic Implementation Problems for Practice (Optional)

• CodeForces 20C – Dijkstra?

• UVa 558 – Wormholes

• UVa 821 – Page Hopping

• UVa 11631 – Dark Roads

• UVa 10147 – Highways



Problems (Required)

• UVa 1235 – Anti Brute Force Lock

• UVa 11733 – Airports

• UVa 10600 – ACM Contest and Blackout

• UVa 10557 – XYZZY

• UVa 1250 – Robot Challenge

• CodeForces 229B – Planets

• CodeForces 329B – Biridian Forest

• CodeForces 676D – Theseus and Labyrinth



Challenges (At least 3 required)

• UVa 1202 – Finding Nemo

• UVa 1253 – Infected Land

• UVa 11329 – Curious Fleas

• CodeForces 295B – Greg and Graph

• CodeForces 295C – Greg and Friends

• CodeForces 472D – Design Tutorial: Inverse the Problem

• For those who have not gotten full points in “The Cheapest Reid” from NOI 2017 

eliminations, we encourage you to try it again. This does not count towards the 3 problems.


