
GRAPH THEORY

What are graphs?
A graph 𝐺 is a pair 𝐺 = (𝑉, 𝐸) where 𝑉 is a non-

empty set of vertices and 𝐸 is a set of edges 𝑒 such 

that 𝑒 = {𝑎, 𝑏} where 𝑎 and 𝑏 are vertices.
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Why graphs?
Graphs are usually used to 

represent different elements that 

are somehow related to each other. 
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What are vertices?
Vertices, sometimes called nodes,

are objects that form graphs. They 

are usually used to represent 

certain elements to be related with 

another.

Examples

Cities in a country

People in a social network

What are edges?
Edges are two element subsets of 

𝑉 (at least in the undirected case, 

but more on this later). They 

usually represent connections in a 

system.

Examples

Roads between cities 

Friendships between people



Just some terms…
Two vertices are said to be adjacent if 

they are joined by an edge. In Fig. A, 

the vertices A and B are adjacent.

An edge is said to be incident to the 

vertices it joins. In Fig. A, the edge 

{𝐴, 𝐵} is incident to vertex 𝐴 and 𝐵. 

The number of edges incident to a 

vertex is called the degree of that 

vertex. It is sometimes denoted as 

deg(𝑣) for some vertex 𝑣. All vertices in 

Fig. A have a degree of 2. 
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Figure A
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In an undirected graph, edges go both ways. An 

edge from 𝐴 to 𝐵 is also an edge from 𝐵 to 𝐴. 

Undirected edges are usually drawn as straight 

lines between vertices. Edges are subsets of the 

set 𝑉.

Example: {𝐴, 𝐵}
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Graph Directedness
Graphs can be directed, sometimes called digraphs, or undirected.
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Figure A
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Figure B

In a directed graph, edges do not go both 

ways. In Figure B, there is an edge from 𝐴 to 𝐵, 

but no edge from 𝐵 to 𝐴. Edges are usually 

drawn with arrows to show directedness. 

Instead of being subsets, edges are ordered 

pairs with both elements from the set 𝑉. 

Example: (𝐴, 𝐵)



Graph Weightedness
Graphs can be weighted, or unweighted.
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Figure A
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Figure B

In a weighted graph, edges each have 

some associated value called the weight

of the edge. Weights are usually drawn 

near the edge they are associated with.

Example: Roads (some roads are longer 

than others, thus have more weight). 
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In an unweighted graph, edges do not 

have any specific numeric value relative to 

other edges in the graph. 

Example: Following on Instagram, a 

specific follower is not intrinsically more 

valuable than another one. 
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Complex Graphs
A graph is called a complex graph when it has loops or multi-edges.

Below are some examples of complex graphs

A B

Loop
A loop is an edge that has the same source 

and destination vertex. In other words, it is 

an edge from a vertex to itself.

Multi-edge
Multi-edges or multiple edges are two or 

more edges between the same two vertices. 

Note that in a directed graph, edges from 𝐴
to 𝐵 and 𝐵 to 𝐴 are not multi-edges (they 

have to be going in the same direction to be 

considered so). 
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A graph without multi-edges or loops is called a simple graph. 
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Walks and Paths
A walk is a sequence of vertices and edges 

𝑣0, 𝑣1, … , 𝑣𝑘
𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘

Such that {𝑣𝑖 , 𝑣𝑖+1} is an edge in 𝐺 for all 𝑖, 0 ≤
𝑖 < 𝑘. The walk starts at 𝑣0 and ends at 𝑣𝑘. 

The length of the walk is 𝑘, its source is 𝑣0
and its destination is 𝑣𝑘.

A path, similar to a walk, is also a sequence of 

vertices and edges.

𝑣0, 𝑣1, … , 𝑣𝑘 , 𝑣𝑖 ≠ 𝑣𝑗 ∀𝑖, 𝑗

𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘

A path cannot cross the same vertex twice, 

however. 

All paths are walks, but not all walks are paths.
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𝐴,𝐵, 𝐸, 𝐷, 𝐵, 𝐶

𝐴, 𝐵 , 𝐵, 𝐸 , 𝐸, 𝐷 , 𝐷, 𝐵 , {𝐵, 𝐶}

Sample Walk
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Sample Path

𝐴,𝐵, 𝐸, 𝐷, 𝐵, 𝐶

𝐴, 𝐵 , 𝐵, 𝐸 , 𝐸, 𝐷 , {𝐷, 𝐶}



Closed Walks and Cycles
A Closed Walk, just like a walk, is a sequence 

of vertices and edges, but it starts and ends 

with the same vertex. In other words, the 

source of the walk is the same as the 

destination. 

𝑣0, 𝑣1, … , 𝑣𝑘
𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘

Such that {𝑣𝑖 , 𝑣𝑖+1} is an edge in 𝐺 for all 𝑖, 0 ≤
𝑖 < 𝑘 and 𝑣0 = 𝑣𝑘. 

A Cycle is to a closed walk as a path is to a 

walk. It is also a sequence of vertices and 

edges starting and ending on the same vertex, 

but all vertices are unique except for the start / 

end vertex. 

All cycles are closed walks, but not all closed 

walks are cycles. 
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𝐴, 𝐵, 𝐸, 𝐷, 𝐵, 𝐶, 𝐴

𝐴, 𝐵 , 𝐵, 𝐸 , 𝐸, 𝐷 , 𝐷, 𝐵 , 𝐵, 𝐶 , {𝐶, 𝐴}

Sample Closed Walk
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Sample Cycle

𝐴, 𝐵, 𝐸, 𝐷, 𝐵, 𝐶, 𝐴

𝐴, 𝐵 , 𝐵, 𝐸 , 𝐸, 𝐷 , 𝐷, 𝐶 , {𝐶, 𝐴}



Special Graphs
Many special types of graphs have names to more uniquely define them.

The following are a few of these graphs.
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Tree
An undirected graph where there is exactly one 

path from any vertex to any other vertex

Complete Graph
A graph where each vertex has an edge to every 

other vertex in the graph.

Bipartite Graph
A graph where the vertices can be divided into two 

sets such that no vertex in one set has an edge to 

another vertex in the same set. Called complete 

bipartite if all vertices in one set are connected to all 

vertices in the other set.
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Path/Linked List
A tree that simply consists of one connected line 

of vertices.

Cycle
A graph that consists of one entire loop or cycle.

Star
A tree with one “center” vertex connected to all the 

other vertices, but all other vertices only connected 

to the center vertex.
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Computer Representation
There are three main ways of representing graphs using a programming language. 

Carefully selecting which representation to use is important when solving a problem. 
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Adjacency Matrix
Stores the graph in a matrix usually 

represented as a 2-D array such that 
matrix[i][j] contains the weight of the 

edge (𝑖, 𝑗).
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A B C

A 0 1 5

B 1 0 7

C 5 7 0
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Adjacency List
Each vertex is associated with a list (can be 

represented in C++ as a vector) populated 

by vertices each is adjacent to. One 

possible implementation of this is to use 

objects.

class Vertex{

public:

int index;

vector<Vertex*> adj; 

Vertex(int ind){

index = ind;

}

};

int main(){

Vertex* a = new Vertex(1);  

Vertex* b = new Vertex(2); 

//If there is an undirected

//edge between a and b

a->adj.push_back(b);

}

Edge List
Perhaps least common among the three 

approaches, a list is created to store all the 

edges in the graph. Edges can be stored as 

objects.

class Edge{

public:

int source, dest;

Edge(int s, int d){

source = s;

dest = d; 

}

};

int main(){

vector<Edge*> edges; 

//Assume 1 and 2 are indices

//of adjacent vertices stored

//in an array

Edge* edge = new Edge(1,2); 

edges.push_back(edge); 

}



Adjacency Matrix

Pros
Can easily retrieve the weight of the edge between two connected vertices or check if two vertices are connected 
(just check matrix[A][B]).

Cons
Looping through all neighbors of one vertex is expensive because you have to go through all of the empty cells.

Takes a lot of memory, a lot of it wasted on empty cells (especially for graphs with many vertices, but few edges). 

Because of this, adjacency matrices cannot be used for problems with relatively large limits.

Each cell can only contain one value, so adjacency matrices do not support complex graphs (unless you use a 2-

dimensional matrix of vectors).

Notes
A sentinel value must be used to “fill in” the empty spaces left by edges that do not exist in the graph. Typical values 

used include 0, -1, and INT_MAX. The choice of sentinel values depends on the problem and how you implement 

your solution. For example, some problems may require you to have negative weight edges, so it may be wiser to use 

INT_MAX.



Adjacency Matrix

Sample Implementation

int adj[N][N];

int main(){

//start of test case

for(int i=0; i<n; i++){

for(int j=0; j<n; j++){

adj[i][j] = sentinel;

}

}

//if a and b are connected

adj[a][b] = weight;

adj[b][a] = weight; //if undirected

//check all neighbors of a

for(int i=0; i<n; i++){

if(adj[a][i] == sentinel) continue;

//use adj[a][i]

}

}



Adjacency List

Pros
Using objects can help in attaching specific information to each vertex.

Less space used than adjacency matrix.

It is easy to loop through all the neighbors of a vertex.

Cons
To check if two vertices are connected, one will have to loop through the whole adjacency list of one of 

the vertices.

Notes
Don’t forget to clear each vector when beginning a new test case if you declare them globally.



Adjacency List

Sample no objects implementation

/*if weighted, use pair<int, int> or create a 

second vector<int> array and use the same indices 

to correspond to the same edge, for example:

vector<int> adj[N], adjw[N];

adj[a].push_back(b);

adjw[a].push_back(weight);

use adj[a][i] and adjw[a][i] */

vector<int> adj[N];

int main(){

//start of test case

for(int i=0; i<n; i++){

//clear adj[i]

}

//if a and b are connected

adj[a].push_back(b);

adj[b].push_back(a); //if undirected

//check all neighbors of a

for(int i=0; i<adj[a].size(); i++){

//a is adjacent to adj[a][i]

}

}



Edge List

Pros
Can easily iterate over all the edges in the graph (required for some algorithms).

Least space used since edges are not repeated for the two vertices they are incident to (unlike in 

adjacency lists)

Cons
Makes it difficult to get only the edges incident to a specific vertex (there are ways to get around this, but 

it requires more space and effort, more on this in the sample implementation).

Like adjacency lists, it is expensive to determine if two vertices are connected.

Notes
Don’t forget to clear the list of edges at the beginning of each test case.

Creating helper functions may make using edge lists easier for many problems.



Edge List

Sample no objects implementation

int main(){

//start of test case

init(nodes);

//if a has an edge to b

addEdge(a, b);

addEdge(b, a); //if undirected

//check all neighbors of a

for(int e=last[a]; e >= 0; e = prev[e]){

//a is adjacent to head[e]

}

}

//for weighted graphs, add an extra array similar 

to adjacency list

int n, e, last[N], prev[E], head[E];

void init(int n){

e = 0;

//set last[i] to -1 for I from 0 to n

}

void addEdge(int u, int v){

head[e] = v; prev[e] = last[u]; 

last[u] = e++;

}



Graph Searching
There are two main ways of searching through or traversing a graph: breadth-first or depth-first.  
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Breadth-First Search (BFS)
Start at some vertex we call the root of the search. From this root, visit all 

adjacent vertices first before moving to the next level. This can be done 

with the use of the queue data structure. 

Depth-First Search (DFS)
Start at some vertex we call the root of the search. From this root, keep 

going to the next level of vertices until a dead-end is reached. Once a 

dead-end is keep moving up levels until a new DFS can be started on an 

unvisited node. This can be done with the use of a stack data structure. 

Applications
Has applications in finding strongly connected components in a graph 

(subgraphs where all vertices are reachable from every other vertex, but 

more on this in the future). 

Applications
Using BFS, we can solve the shortest path problem for unweighted 

graphs, as it is ensured that we go from the source to the destination in 

the smallest number of vertex-vertex traversals. 
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Graph Searching
Sample implementation (using the object version of adjacency list)

A

Breadth-First Search (BFS)

int main(){

//setup graph

queue<Vertex*> q;

q.push(root);

while(q.size()>0){

Vertex* v = q.front(); q.pop();

for(int i=0; i<v->adj.size(); i++){

q.push(v->adj[i]);

}

}

}

Depth-First Search (DFS)

int main(){

//setup graph

stack<Vertex*> s;

s.push(root);

while(s.size()>0){

Vertex* v = s.top(); s.pop();

for(int i=0; i<v->adj.size(); i++){

s.push(v->adj[i]);

}

}

}

B

Note
To avoid looping infinitely, we keep track of which vertices have already been visited in the course of the search, typically using 

booleans. If a vertex has been visited before, we skip it because we would already be repeating a part of the search we did before.



Euler Walk
An Euler Walk (sometimes called 

an Euler Path) is a walk that goes 

through every edge in the graph 

exactly once.

Example: Drawing the house 

below without lifting your pen is 

an example of an Euler Walk. 

Euler Tour
An Euler Tour (sometimes called 

an Euler Cycle) is an Euler Walk 

that starts and ends on the same 

vertex. 
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Eulerian Graphs
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Euler Walk
Corollary: A connected graph has an Euler Walk if 

and only if there are at most two vertices with odd 

degree

Intuition: Start at one of the vertices with odd degree. 

If there is an edge that leads to the other vertex of 

odd degree, ignore it first. Find an Euler Tour starting 

from this initial vertex then traverse the previously 

ignored edge. 
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Euler Tour
Theorem: A connected graph (meaning there is a 

path from each node to every other node) has an 

Euler Tour if and only if every vertex in the graph has 

even degree. 

Intuition: To traverse every edge exactly once and go 

back to the start vertex, the number of ways to enter 

a vertex must be equal to the number of ways to exit.

A B

Note
For those interested in the algorithm to determine an Euler Tour/Walk, look up Hierholzer’s Algorithm.



Directed Acyclic Graph
As the name implies, a Directed Acyclic 

Graph or DAG is simply a directed graph 

without any cycles.

DAGs are important because they allow 

us to capture the reality of dependencies 

(tasks that make prerequisites of other 

tasks). 

Example: 
Having to take some subjects before 

others. 

A certain program needing the output of 

another program before executing. 
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Topological Sorting
A topological sorting of a DAG is a list of 

all the vertices such that each vertex 𝑣
appears before all other vertices 

reachable from 𝑣. Note that a single DAG 

may have multiple different topological 

orderings.

Sample Topological Sorting: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸
Another possible sorting is  𝐴, 𝐶, 𝐷, 𝐵, 𝐸



Topological Sorting
Theorem: Every finite DAG has a 

topological ordering. We can show this 

by starting a search from the minimal

elements. 

A vertex 𝑣 is minimal if and only if 𝑣 is 

not reachable from any other vertex 

(has an in-degree of 0). 
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Vertex 𝐴 is the only minimal vertex in the 

above graph

Towards an Algorithm
Generating a topological ordering can 

be done with a BFS-like approach.

Starting a search from minimal

elements, we can easily generate a 

topological ordering. Once a vertex has 

been visited, we can remove it from the 

graph (subsequently removing all of its 

edges). Assuming a valid DAG, deleting 

a vertex will result in new minimal 

elements. We then place these new 

minimal elements into our queue and 

continue our search from there. The 

order with which we visit vertices and 

delete them from the graph should be a 

topological ordering. 



Cycle Finding
Finding the cycles within a graph can be done using a DFS-like approach. Start the search from 

some root vertex. When processing a vertex, we know that a path exists from the root to the 

current vertex using the vertices we passed through in the previous iterations, excluding those 

we have already backtracked from. Because of this, if there is an edge from the current vertex to 

some vertex already in this path, we know that a cycle exists from that vertex back to itself.
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Cycle exists: 𝐵, 𝐶, 𝐸, 𝐹, 𝐺

Sample Implementation (using object version of adjacency list and recursion instead of a stack)

void DFS(Vertex* v, Vertex* p){

v->inPath = true;

for(int i=0; i<v->adj.size(); i++){

if(v->adj[i] == p) continue;

if(v->adj[i]->inPath) //cycle found

DFS(v->adj[i], v);

}

v->inPath = false;

}

int main(){

//setup graph

DFS(root, NULL);

}

//Note that this only finds cycles reachable from root.

//You may have to repeat the process for other vertices.



Challenges (to be submitted)

• Codeforces 292B – Network Topology

• UVa 280 – Vertex

• UVa 10150 – Doublets

• UVa 459 – Graph Connectivity

• UVa 10203 – Snow Clearing

• UVa 11060 – Beverages

• UVa 10116 – Robot Motion

• UVa 12582 – Wedding of Sultan

• UVa 572 – Oil Deposits



Challenges (at least 2, the rest is optional)

• UVa 1103 – Ancient Messages

• Codeforces 510C – Fox and Names

• Codeforces 115A – Party

• Codeforces 475B – Strongly Connected City

• Codeforces 22C – System Administrator

• Codeforces 402E – Strictly Positive Matrix


