
GRAPH THEORY

What are graphs?
A graph 𝐺 is a pair 𝐺 = (𝑉, 𝐸) where 𝑉 is a non-

empty set of vertices and 𝐸 is a set of edges 𝑒 such

that 𝑒 = {𝑎, 𝑏} where 𝑎 and 𝑏 are vertices.

A B

C

Why graphs?
Graphs are usually used to

represent different elements that

are somehow related to each other.

Hadrian Ang, Kyle See, March 2017

What are vertices?
Vertices, sometimes called nodes,

are objects that form graphs. They

are usually used to represent

certain elements to be related with

another.

Examples

Cities in a country

People in a social network

What are edges?
Edges are two element subsets of

𝑉 (at least in the undirected case,

but more on this later). They

usually represent connections in a

system.

Examples

Roads between cities

Friendships between people

Just some terms…
Two vertices are said to be adjacent if

they are joined by an edge. In Fig. A,

the vertices A and B are adjacent.

An edge is said to be incident to the

vertices it joins. In Fig. A, the edge

{𝐴, 𝐵} is incident to vertex 𝐴 and 𝐵.

The number of edges incident to a

vertex is called the degree of that

vertex. It is sometimes denoted as

deg(𝑣) for some vertex 𝑣. All vertices in

Fig. A have a degree of 2.

A B

C

Figure A

B

In an undirected graph, edges go both ways. An

edge from 𝐴 to 𝐵 is also an edge from 𝐵 to 𝐴.

Undirected edges are usually drawn as straight

lines between vertices. Edges are subsets of the

set 𝑉.

Example: {𝐴, 𝐵}

A

Graph Directedness
Graphs can be directed, sometimes called digraphs, or undirected.

A B

C

Figure A

A B

C

Figure B

In a directed graph, edges do not go both

ways. In Figure B, there is an edge from 𝐴 to 𝐵,

but no edge from 𝐵 to 𝐴. Edges are usually

drawn with arrows to show directedness.

Instead of being subsets, edges are ordered

pairs with both elements from the set 𝑉.

Example: (𝐴, 𝐵)

Graph Weightedness
Graphs can be weighted, or unweighted.

A B

C

Figure A

A B

C

Figure B

In a weighted graph, edges each have

some associated value called the weight

of the edge. Weights are usually drawn

near the edge they are associated with.

Example: Roads (some roads are longer

than others, thus have more weight).

1

5 7

In an unweighted graph, edges do not

have any specific numeric value relative to

other edges in the graph.

Example: Following on Instagram, a

specific follower is not intrinsically more

valuable than another one.

BA

Complex Graphs
A graph is called a complex graph when it has loops or multi-edges.

Below are some examples of complex graphs

A B

Loop
A loop is an edge that has the same source

and destination vertex. In other words, it is

an edge from a vertex to itself.

Multi-edge
Multi-edges or multiple edges are two or

more edges between the same two vertices.

Note that in a directed graph, edges from 𝐴
to 𝐵 and 𝐵 to 𝐴 are not multi-edges (they

have to be going in the same direction to be

considered so).

A A B

A

A graph without multi-edges or loops is called a simple graph.

B C A B C

Walks and Paths
A walk is a sequence of vertices and edges

𝑣0, 𝑣1, … , 𝑣𝑘
𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘

Such that {𝑣𝑖 , 𝑣𝑖+1} is an edge in 𝐺 for all 𝑖, 0 ≤
𝑖 < 𝑘. The walk starts at 𝑣0 and ends at 𝑣𝑘.

The length of the walk is 𝑘, its source is 𝑣0
and its destination is 𝑣𝑘.

A path, similar to a walk, is also a sequence of

vertices and edges.

𝑣0, 𝑣1, … , 𝑣𝑘 , 𝑣𝑖 ≠ 𝑣𝑗 ∀𝑖, 𝑗

𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘

A path cannot cross the same vertex twice,

however.

All paths are walks, but not all walks are paths.

A B

C D

E

𝐴,𝐵, 𝐸, 𝐷, 𝐵, 𝐶

𝐴, 𝐵 , 𝐵, 𝐸 , 𝐸, 𝐷 , 𝐷, 𝐵 , {𝐵, 𝐶}

Sample Walk

A B

C D

E

Sample Path

𝐴,𝐵, 𝐸, 𝐷, 𝐵, 𝐶

𝐴, 𝐵 , 𝐵, 𝐸 , 𝐸, 𝐷 , {𝐷, 𝐶}

Closed Walks and Cycles
A Closed Walk, just like a walk, is a sequence

of vertices and edges, but it starts and ends

with the same vertex. In other words, the

source of the walk is the same as the

destination.

𝑣0, 𝑣1, … , 𝑣𝑘
𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘

Such that {𝑣𝑖 , 𝑣𝑖+1} is an edge in 𝐺 for all 𝑖, 0 ≤
𝑖 < 𝑘 and 𝑣0 = 𝑣𝑘.

A Cycle is to a closed walk as a path is to a

walk. It is also a sequence of vertices and

edges starting and ending on the same vertex,

but all vertices are unique except for the start /

end vertex.

All cycles are closed walks, but not all closed

walks are cycles.

A B

C D

E

𝐴, 𝐵, 𝐸, 𝐷, 𝐵, 𝐶, 𝐴

𝐴, 𝐵 , 𝐵, 𝐸 , 𝐸, 𝐷 , 𝐷, 𝐵 , 𝐵, 𝐶 , {𝐶, 𝐴}

Sample Closed Walk

A B

C D

E

Sample Cycle

𝐴, 𝐵, 𝐸, 𝐷, 𝐵, 𝐶, 𝐴

𝐴, 𝐵 , 𝐵, 𝐸 , 𝐸, 𝐷 , 𝐷, 𝐶 , {𝐶, 𝐴}

Special Graphs
Many special types of graphs have names to more uniquely define them.

The following are a few of these graphs.

A B C

Tree
An undirected graph where there is exactly one

path from any vertex to any other vertex

Complete Graph
A graph where each vertex has an edge to every

other vertex in the graph.

Bipartite Graph
A graph where the vertices can be divided into two

sets such that no vertex in one set has an edge to

another vertex in the same set. Called complete

bipartite if all vertices in one set are connected to all

vertices in the other set.

D E F

Path/Linked List
A tree that simply consists of one connected line

of vertices.

Cycle
A graph that consists of one entire loop or cycle.

Star
A tree with one “center” vertex connected to all the

other vertices, but all other vertices only connected

to the center vertex.

A B

C

D

E

F

G

A B

C D

A B

C D

A B C D

A B

D C

B C

E D

A

Computer Representation
There are three main ways of representing graphs using a programming language.

Carefully selecting which representation to use is important when solving a problem.

A B C

Adjacency Matrix
Stores the graph in a matrix usually

represented as a 2-D array such that
matrix[i][j] contains the weight of the

edge (𝑖, 𝑗).

A B

C

A B C

A 0 1 5

B 1 0 7

C 5 7 0

1

5 7

Adjacency List
Each vertex is associated with a list (can be

represented in C++ as a vector) populated

by vertices each is adjacent to. One

possible implementation of this is to use

objects.

class Vertex{

public:

int index;

vector<Vertex*> adj;

Vertex(int ind){

index = ind;

}

};

int main(){

Vertex* a = new Vertex(1);

Vertex* b = new Vertex(2);

//If there is an undirected

//edge between a and b

a->adj.push_back(b);

}

Edge List
Perhaps least common among the three

approaches, a list is created to store all the

edges in the graph. Edges can be stored as

objects.

class Edge{

public:

int source, dest;

Edge(int s, int d){

source = s;

dest = d;

}

};

int main(){

vector<Edge*> edges;

//Assume 1 and 2 are indices

//of adjacent vertices stored

//in an array

Edge* edge = new Edge(1,2);

edges.push_back(edge);

}

Adjacency Matrix

Pros
Can easily retrieve the weight of the edge between two connected vertices or check if two vertices are connected
(just check matrix[A][B]).

Cons
Looping through all neighbors of one vertex is expensive because you have to go through all of the empty cells.

Takes a lot of memory, a lot of it wasted on empty cells (especially for graphs with many vertices, but few edges).

Because of this, adjacency matrices cannot be used for problems with relatively large limits.

Each cell can only contain one value, so adjacency matrices do not support complex graphs (unless you use a 2-

dimensional matrix of vectors).

Notes
A sentinel value must be used to “fill in” the empty spaces left by edges that do not exist in the graph. Typical values

used include 0, -1, and INT_MAX. The choice of sentinel values depends on the problem and how you implement

your solution. For example, some problems may require you to have negative weight edges, so it may be wiser to use

INT_MAX.

Adjacency Matrix

Sample Implementation

int adj[N][N];

int main(){

//start of test case

for(int i=0; i<n; i++){

for(int j=0; j<n; j++){

adj[i][j] = sentinel;

}

}

//if a and b are connected

adj[a][b] = weight;

adj[b][a] = weight; //if undirected

//check all neighbors of a

for(int i=0; i<n; i++){

if(adj[a][i] == sentinel) continue;

//use adj[a][i]

}

}

Adjacency List

Pros
Using objects can help in attaching specific information to each vertex.

Less space used than adjacency matrix.

It is easy to loop through all the neighbors of a vertex.

Cons
To check if two vertices are connected, one will have to loop through the whole adjacency list of one of

the vertices.

Notes
Don’t forget to clear each vector when beginning a new test case if you declare them globally.

Adjacency List

Sample no objects implementation

/*if weighted, use pair<int, int> or create a

second vector<int> array and use the same indices

to correspond to the same edge, for example:

vector<int> adj[N], adjw[N];

adj[a].push_back(b);

adjw[a].push_back(weight);

use adj[a][i] and adjw[a][i] */

vector<int> adj[N];

int main(){

//start of test case

for(int i=0; i<n; i++){

//clear adj[i]

}

//if a and b are connected

adj[a].push_back(b);

adj[b].push_back(a); //if undirected

//check all neighbors of a

for(int i=0; i<adj[a].size(); i++){

//a is adjacent to adj[a][i]

}

}

Edge List

Pros
Can easily iterate over all the edges in the graph (required for some algorithms).

Least space used since edges are not repeated for the two vertices they are incident to (unlike in

adjacency lists)

Cons
Makes it difficult to get only the edges incident to a specific vertex (there are ways to get around this, but

it requires more space and effort, more on this in the sample implementation).

Like adjacency lists, it is expensive to determine if two vertices are connected.

Notes
Don’t forget to clear the list of edges at the beginning of each test case.

Creating helper functions may make using edge lists easier for many problems.

Edge List

Sample no objects implementation

int main(){

//start of test case

init(nodes);

//if a has an edge to b

addEdge(a, b);

addEdge(b, a); //if undirected

//check all neighbors of a

for(int e=last[a]; e >= 0; e = prev[e]){

//a is adjacent to head[e]

}

}

//for weighted graphs, add an extra array similar

to adjacency list

int n, e, last[N], prev[E], head[E];

void init(int n){

e = 0;

//set last[i] to -1 for I from 0 to n

}

void addEdge(int u, int v){

head[e] = v; prev[e] = last[u];

last[u] = e++;

}

Graph Searching
There are two main ways of searching through or traversing a graph: breadth-first or depth-first.

A B

Breadth-First Search (BFS)
Start at some vertex we call the root of the search. From this root, visit all

adjacent vertices first before moving to the next level. This can be done

with the use of the queue data structure.

Depth-First Search (DFS)
Start at some vertex we call the root of the search. From this root, keep

going to the next level of vertices until a dead-end is reached. Once a

dead-end is keep moving up levels until a new DFS can be started on an

unvisited node. This can be done with the use of a stack data structure.

Applications
Has applications in finding strongly connected components in a graph

(subgraphs where all vertices are reachable from every other vertex, but

more on this in the future).

Applications
Using BFS, we can solve the shortest path problem for unweighted

graphs, as it is ensured that we go from the source to the destination in

the smallest number of vertex-vertex traversals.

0 2

1 3

4

5

0 5

1 2

4

3

Graph Searching
Sample implementation (using the object version of adjacency list)

A

Breadth-First Search (BFS)

int main(){

//setup graph

queue<Vertex*> q;

q.push(root);

while(q.size()>0){

Vertex* v = q.front(); q.pop();

for(int i=0; i<v->adj.size(); i++){

q.push(v->adj[i]);

}

}

}

Depth-First Search (DFS)

int main(){

//setup graph

stack<Vertex*> s;

s.push(root);

while(s.size()>0){

Vertex* v = s.top(); s.pop();

for(int i=0; i<v->adj.size(); i++){

s.push(v->adj[i]);

}

}

}

B

Note
To avoid looping infinitely, we keep track of which vertices have already been visited in the course of the search, typically using

booleans. If a vertex has been visited before, we skip it because we would already be repeating a part of the search we did before.

Euler Walk
An Euler Walk (sometimes called

an Euler Path) is a walk that goes

through every edge in the graph

exactly once.

Example: Drawing the house

below without lifting your pen is

an example of an Euler Walk.

Euler Tour
An Euler Tour (sometimes called

an Euler Cycle) is an Euler Walk

that starts and ends on the same

vertex.

A B

C D

E

Eulerian Graphs

A

E

DC

B

Euler Walk
Corollary: A connected graph has an Euler Walk if

and only if there are at most two vertices with odd

degree

Intuition: Start at one of the vertices with odd degree.

If there is an edge that leads to the other vertex of

odd degree, ignore it first. Find an Euler Tour starting

from this initial vertex then traverse the previously

ignored edge.

A

E

DC

B

Euler Tour
Theorem: A connected graph (meaning there is a

path from each node to every other node) has an

Euler Tour if and only if every vertex in the graph has

even degree.

Intuition: To traverse every edge exactly once and go

back to the start vertex, the number of ways to enter

a vertex must be equal to the number of ways to exit.

A B

Note
For those interested in the algorithm to determine an Euler Tour/Walk, look up Hierholzer’s Algorithm.

Directed Acyclic Graph
As the name implies, a Directed Acyclic

Graph or DAG is simply a directed graph

without any cycles.

DAGs are important because they allow

us to capture the reality of dependencies

(tasks that make prerequisites of other

tasks).

Example:
Having to take some subjects before

others.

A certain program needing the output of

another program before executing.

A B

C D

E

Topological Sorting
A topological sorting of a DAG is a list of

all the vertices such that each vertex 𝑣
appears before all other vertices

reachable from 𝑣. Note that a single DAG

may have multiple different topological

orderings.

Sample Topological Sorting: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸
Another possible sorting is 𝐴, 𝐶, 𝐷, 𝐵, 𝐸

Topological Sorting
Theorem: Every finite DAG has a

topological ordering. We can show this

by starting a search from the minimal

elements.

A vertex 𝑣 is minimal if and only if 𝑣 is

not reachable from any other vertex

(has an in-degree of 0).

A B

C D

E

Vertex 𝐴 is the only minimal vertex in the

above graph

Towards an Algorithm
Generating a topological ordering can

be done with a BFS-like approach.

Starting a search from minimal

elements, we can easily generate a

topological ordering. Once a vertex has

been visited, we can remove it from the

graph (subsequently removing all of its

edges). Assuming a valid DAG, deleting

a vertex will result in new minimal

elements. We then place these new

minimal elements into our queue and

continue our search from there. The

order with which we visit vertices and

delete them from the graph should be a

topological ordering.

Cycle Finding
Finding the cycles within a graph can be done using a DFS-like approach. Start the search from

some root vertex. When processing a vertex, we know that a path exists from the root to the

current vertex using the vertices we passed through in the previous iterations, excluding those

we have already backtracked from. Because of this, if there is an edge from the current vertex to

some vertex already in this path, we know that a cycle exists from that vertex back to itself.

A

B

C E

D

FG

Cycle exists: 𝐵, 𝐶, 𝐸, 𝐹, 𝐺

Sample Implementation (using object version of adjacency list and recursion instead of a stack)

void DFS(Vertex* v, Vertex* p){

v->inPath = true;

for(int i=0; i<v->adj.size(); i++){

if(v->adj[i] == p) continue;

if(v->adj[i]->inPath) //cycle found

DFS(v->adj[i], v);

}

v->inPath = false;

}

int main(){

//setup graph

DFS(root, NULL);

}

//Note that this only finds cycles reachable from root.

//You may have to repeat the process for other vertices.

Challenges (to be submitted)

• Codeforces 292B – Network Topology

• UVa 280 – Vertex

• UVa 10150 – Doublets

• UVa 459 – Graph Connectivity

• UVa 10203 – Snow Clearing

• UVa 11060 – Beverages

• UVa 10116 – Robot Motion

• UVa 12582 – Wedding of Sultan

• UVa 572 – Oil Deposits

Challenges (at least 2, the rest is optional)

• UVa 1103 – Ancient Messages

• Codeforces 510C – Fox and Names

• Codeforces 115A – Party

• Codeforces 475B – Strongly Connected City

• Codeforces 22C – System Administrator

• Codeforces 402E – Strictly Positive Matrix

